Design of High-Performance Ships using Simulations


  • Fritz Grannemann Aufforth
  • Volker Bertram



CFD, ship design, simulation, structural analysis


Simulation-based design increasingly replaces traditional experience-based design. This article gives an overview of techniques now used in advanced industry practice, with particular focus on navy applications. The article covers the basics of the techniques, illustrating approaches and state of the art with applications taken from the experience of Germanischer Lloyd.


Download data is not yet available.


ASMUSSEN, I.; MUMM, H. Ship vibration, GL technology, Germanischer Lloyd, Hamburg, 2001.

BERTRAM, V.; COUSER, P. CFD possibilities and practice, The Naval Architect, September 2007, pp.137-147 2007.

BERTRAM, V.; EL MOCTAR, O.M.; JUNALIK, B.; NUSSER, S. Fire and ventilation simulations for ship compartments, 4th Int. Conf. High-Performance Marine Vehicles (HIPER), Rome, pp.5-17. 2004.

CABOS, C.; EISEN, H.; KRÖMER, M. GL.ShipLoad: An Integrated Load Generation Tool for FE Analysis, 5th Int. Conf. Computer and IT Applications to the Maritime Industries, Leiden, 2006.

CABOS, C.; JOKAT, J. Computation of structure-borne noise propagation in ship structures using noise-FEM, 7th Int. Symp. Practical Design of Ships and Mobile Units (PRADS), The Hague, pp.927-934. 1998.

CABOS, C.; WORMS, C.; JOKAT, J. Application of an energy finite element method to the prediction of structure borne sound propagation in ships, Int. Congr. Noise Control Engineering, The Hague. 2001.

EL MOCTAR, O.M. Computation of slamming and global loads for structural design using RANSE, 8th Num. Towing Tank Symp. (NuTTS), Varna. 2005.

EL MOCTAR, O.M. How to avoid or minimize rudder cavitation, 10th Num. Towing Tank Symp. (NuTTS), Hamburg. 2007. EL MOCTAR, O.M.; BERTRAM, V. Computation of viscous flow around fast ship superstructures, 24th Symp. Naval Hydrodyn., Fukuoka. 2002.

FACH, K.; BERTRAM, V. High-performance simulations for high-performance ships, 5th Int. Conf. High-Performance Marine Vehicles (HIPER), Launceston, 2006, pp.455-465. 2006.

GL. Recommendations for preventive measures to avoid or minimize rudder cavitation, Germanischer Lloyd, Hamburg. 2005.

IMO. Interim guidelines for evacuation analyses for new and existing passenger craft, MSC/Circ.1033, International Maritime Organization 2002.

JUNGLEWITZ, A.; EL MOCTAR, O.M. Numerical analysis of the steering capability of a podded drive, Ship Technology Research 51/3, pp.134-145. 2004.

MEYER-KÖNIG, T.; VALANTO, P.; POVEL, D. Implementing ship motion in AENEAS - Model development and first results, 3rd Int. Conf. Pedestrian and Evacuation Dynamics, Vienna. 2005.

OBERHAGEMANN, J.; EL MOCTAR, O.; HOLTMANN, M.; SCHELLIN, T.; BERTRAM, V.; KIM, D.W. Numerical simulation of stern slamming and whipping, 11th Numerical Towing Tank Symp., Brest. 2008.

PETERSEN, U.; MEYER-KÖNIG, T.; POVEL, D. Optimising boarding and de-boarding processes with AENEAS, 7th Int. Conf. Fast Sea Transportation FAST, Ischia, pp.9-16. 2003.

PETERSEN, U.; VOELKER, J. Deviating from the rules – ways to demonstrate an equiva¬lent level of safety, World Maritime Technology Conf., San Francisco. 2003.

WILKEN, M.; CABOS, C.; SEMRAU, S.; WORMS, C.; JOKAT, J. Prediction and measurement of structure-borne sound propagation in a full scale deckhouse-mock-up, 9th Int. Symp. Practical Design of Ships and Mobile Units (PRADS), Lübeck-Travemünde, pp.653-659. 2004.

ZHANG, L.; EGGE, E.D.; BRUHNS, H. Approval procedure concept for alternative arrangements, 3rd Int. Conf. Collision and Grounding of Ships (ICCGS), Tokyo, pp. 87-96. 2004.




How to Cite

Grannemann Aufforth, F., & Bertram, V. (2010). Design of High-Performance Ships using Simulations. Ciencia Y tecnología De Buques, 3(6), 9–18.



Scientific and Technological Research Articles
QR Code

Some similar items: