Flexible Design as an Acquisition Opportunity


  • James A. Johnson
  • Ian H. Wakeling




Navies around the world adopt different ways of acquiring ships. Using a single large prime contractor, placing individual contracts for design, build and integration, or employing a state-owned shipyard with external support are all procurement options that we see today.

‘Flexibility’ in warship design is normally perceived as provision of extra empty space, weight and power, which could be filled with new equipment at some point in the future. However, this idea can be extended to describe a design that achieves true flexibility by exploiting the synergy with different acquisition strategies, adaptability allowing a choice of balanced capability and options for incremental acquisition to control cost and risk profiles. This leads to a design that will deliver a class of warships able to meet the evolving roles and threats throughout its life, whilst not introducing additional risk and cost into the programmes of any modern Navy around the world which adopts it.

To achieve this flexibility BMT have created a single base design with multiple configurations; a warship with a functional arrangement that is able to be tailored to meet the specific requirements and budget of each Navy, minimising the initial cost penalty in a programme, and maximising commonality. It also allows for modular construction techniques which not only apply to single yard construction, including small and medium shipyards, but enables blocks to be built in several shipyards.

This paper will describe the underlying considerations behind this flexibility, including incremental acquisition as a cost mitigation in procurement programmes, and the different potential partnership models between shipyard, designer and integrator in effective acquisition programmes which work to the strengths of each party.


Download data is not yet available.




How to Cite

Johnson, J. A., & Wakeling, I. H. (2017). Flexible Design as an Acquisition Opportunity. Ciencia Y tecnología De Buques, 11(21), 51–64. https://doi.org/10.25043/19098642.152



Scientific and Technological Research Articles