Reenactment of a bollard pull test for a double propeller tugboat using computational fluid dynamics
DOI:
https://doi.org/10.25043/19098642.117Keywords:
Bollard pull test, tugboat, power, simulation, modelling, computational fluid dynamicsAbstract
Use of CFD simulations is an affordable and trustworthy way of determining a vessel’s capacity before its construction. This study focuses in simulating a bollard pull of a specific tugboat and comparing the results with those of the real test to which it was subjected after construction. In compliance with the regulations of the classification societies regarding these types of tests, simulations will be carried out to study the bollard pull tests of a double propeller two boat. The results showed that the mathematical model is suitable for a numerical calculation of the bollard pull tests.
Downloads
References
. I. TREJO, M. TERCEÑO, J. VALLE, A. IRANZO, J. Domingo, Analysis of a ship propeller using cfd codes. Calculation of the resistance and the wave profi le of a 3600 TEU container ship. 2007.
. F. PACURARU, A. LUNGU, C. UNGUREANU and O. MARCU, Numerical simulation of the fl ow around a steerable propulsion unit. 25th IAHR Symposium on Hydraulic Machinery and Systems. 2010.
. ING. LEONEL GALEANOVASCONCELOS, DR. C. ING. ALEJANDRO P. PRIETO FERNÁNDEZ, DR. C. ING. CARLOS ALEXANDER RECAREY MORFA. Experimentos Numéricos CFD en Propulsión Naval. VII Symmtechnaval 2012. IPIN Cuba.
. J. MARTÍNEZ DE LA CALLE, J. GONZÁLEZ PÉREZ, L. BALBONA
CALVO, E. BLANCO MARIGORTA, Análisis del flujo en una hélice marina. Comparación de los resultados numéricos con las medidas experimentales. 2002.
. ISAO FUNENO, Hydrodynamic Optimal Design of Ducted Azimuth Thrusters. First International Symposium on Marine Propulsors smp’09, Trondheim, Norway, June 2009.
. DR PAUL MERTES, HANS-JÜRGEN HEINKE, Aspects of the Design Procedure for Propellers Providing Maximum Bollard Pull. Suntec Convention Centre, Singapore Organised by the ABR Company Ltd. 2008.
. W.H. LAM, D.J.ROBINSON, G.A.HAMILL, Y H.T.JOHNSTON, An effective method for comparing the turbulence intensity from LDA measurements and CFD predictions within a ship propeller jet. 2012.
. ABDEL-MAKSOUD, M., HEINKE, H.-J. (2002). Scale Effects on Ducted Propellers. 24th Symposium on Naval Hydrodynamics. Fukuoka, Japan.

Published
How to Cite
Issue
Section
License
The authors who publish in this Journal certify that:
- The work submitted for publication in The Ship Science and Technology journal, was written by the author, given that its content is the product of his/her direct intellectual contribution.
- All data and references to material already published are duly identified with their respective credits and are included in the bibliographic notes and quotations highlighted as such.
- All materials submitted for publication are completely free of copyrights; consequently, the author accepts responsibility for any lawsuit or claim related with Intellectual Property Rights thereof, Exonerating of responsibility to The Science and Technology for the Development of Naval, Maritime, and Riverine Industry Corporation, COTECMAR.
- In the event that the article is chosen for publication by The Ship Science and Technology journal, the author state that he/she totally transfers reproduction rights of such to The Science and Technology for the Development of Naval, Maritime, and Riverine Industry Corporation, COTECMAR.
- The authors retain the copyright and transfer to COTECMAR the right of publication and reproduction of the work which will be simultaneously subject to the Creative Commons Attribution License (CC -BY) , which allows the license to copy, distribute, display and represent the work and to make derivative works as long as it recognizes and cites the work in the manner specified by the author or licensor.
- For more information about the Creative Commons Attribution License (CC -BY) and his use and scope, please visit the following web page https://creativecommons.org/licenses/by-sa/4.0/legalcode