Ship maneuverability: full-scale trials of colombian Navy Riverine Support Patrol Vessel


  • Jorge E. Carreño Moreno COTECMAR. Oldenburg, Lower Saxony. Germany.
  • Etty Y. Sierra Vanegas COTECMAR. Cartagena, Bolívar. Colombia.
  • Victor H. Jiménez González COTECMAR. Cartagena, Bolívar. Colombia.



maneuverability, shallow waters, sea trials, ship dynamics


Methodology and results of full scale maneuvering trials for Riverine Support Patrol Vessel “RSPV”, built by COTECMAR for the Colombian Navy are presented. This ship is equipped with a “Pump – Jet” propulsion system and the hull corresponds to a wide-hull with a high Beam – Draft ratio (B/T=9.5). Tests were based on the results of simulation of turning diameters obtained from TRIBON M3˝ design software, applying techniques of Design of Experiments “DOE”, to rationalize the number of runs in different conditions of water depth, ship speed, and rudder angle. Results validate the excellent performance of this class of ship and show that turning diameter and other maneuvering characteristics improve with decreasing water depth.


Download data is not yet available.


. CARREÑO, J.E. Proyecto de Tesis Doctoral. 2006. Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Navales.

. DELEFORTRIE, G. and VANTORRE, M. Modeling the Maneuvering Behavior of Container Carriers in Shallow Water. Journal of Ship Research, No. 4, Vol. 51, December 2007, p. 287–296.


. GUEDES, C. FRANCISCO, R.A. MOREIRA, L and LARANJINHA, M. Full-Scale Measurements of the Maneuvering Capabilities of Fast Patrol Vessels, Argos Class. Marine technology, No 1, Vol 41, January 2004, p.7-16.

. IMO. Interim Standards for Ship Maneuverability, Resolution A.751 (18), Nov 1993.

. IMO. Explanatory Notes to the Interim Standards for Ship Maneuverability. Resolution MSC/Circ.644, June 1994.

. IMO. Standard for Ship Maneuverability. Resolution MSC. 137(76), 2002.

. ISLAM, M. Combined use of dimensional analysis and modern experimental design methodologies in hydrodynamics experiments. Ocean Engineering 36, (2009), p. 237–247.

. ITTC MANOEUVRING COMMITTEE. Recommended Procedures. Full Scale Measurements Maneuverability, Full scale Maneuvering Trials Procedure. 2002.

. ITTC MANOEUVRING COMMITTEE. Final Report and Recommendations to the 25th ITTC. 2008.

. KHATTAB, Omar. Multiple regression analysis of the hydrodynamic drifttives for manoeuvring equations. British Ship Research Association, December 1984.

. KIJIMA, K. LEE, S. FURUKAWA, Y and NAKIRI, Y. Ship Manoeuvring Characteristics as Function of Ship Form in Shallow Water. In: Maritime Institute. International Conference on Marine Simulation and Ship Maneuverability MARSIM. June 2006.

. MONTGOMERY, D. C. Diseño y análisis de experimentos, Segunda Edición, Limusa Wiley. 2004.

. SIERRA, E.Y. Diseño y construcción de un equipo portátil que integre los elementos utilizados para las pruebas de mar y estudio de incertidumbre de las medidas, basado en normas y estándares internacionales. Cartagena de indias D.T. y C.2008. Trabajo de grado (Ingeniera Electrónica). UTB. Facultad de ingeniería eléctrica y electrónica.

. SNAME. Guide for Sea Trials. Technical and Research Bulletin N° 3-47, 1989.

. THE SPECIAL COMMITTEE ON TRIALS AND MONITORING. Final report and recommendations to the 22nd ITTC. 2005.

. VILLEGAS, J.E. Herramienta de análisis de videos para apoyar los procesos de recopilación de datos en pruebas de mar. Cartagena de Indias, Julio de 2011.

. YOSHIMURA, Y and SAKURAI, H. Mathematical Model for the Manoeuvring Ship Motion in Shallow Water (3rd Report: Manoeuvrability of a Twin-propeller Twinrudder ship). KSNAJ, Vol 211, March 1988, p.115-126.




How to Cite

Carreño Moreno, J. E., Sierra Vanegas, E. Y., & Jiménez González, V. H. (2011). Ship maneuverability: full-scale trials of colombian Navy Riverine Support Patrol Vessel. Ciencia Y tecnología De Buques, 5(9), 69–86.



Scientific and Technological Research Articles
QR Code