Caracterización mecánica y microestructural de acero naval sometido a cargas dinámicas por explosión

Authors

  • José A. Alarcón Ahumada
  • Juan Fajardo Cuadro
  • Jairo Useche Vivero
  • Carlos Cano Restrepo
  • Diana Ramírez Wilches

Keywords:

grade A ASTM A 131 steel, explosions, plastic deformation, destructive testing, non destructive testing, naval panels

Abstract

The work presents the mechanical and micro-structural characterization of the grade A ASTM A 131 steel laminate that form naval panels (reinforced laminate with defined ratios aspect l/b), attained by means of destructive testing, to establish the mechanical response of naval structures submitted to those types of charges. Measurements of micro-hardness, grain size and tension tests of specimens of the material were carried out before and after the impact. The material hit was selected from structural panels submitted to controlled explosions generated nearby with 25g charges of pentolite, placed at predetermined distances. For the characterization, panels with the presence of fissures were rejected. Important variations in micro-hardness and mechanical characteristics appeared; nevertheless, significant micro-structural changes were not observed in grain size.

Downloads

Download data is not yet available.

References

Callistter, W. (2003) Materials science and engineering. An introduction. New York, John Wiley & Sons.

Dowling, N. (1999) Mechanical Behavior of materials. New Jersey, Prentice Hall. 2ª ed.

Graham A. & Walsh. (September, 2003). “Potential metallographic technique for the investigation of pipe bombings”, [en línea] en http://www.astm.org/cgi-bin/SoftCart.exe/JOURNALS/FORENSIC/PAGES/4420.htm?E+mystore.

Greaves, R. H. (1979), Metalografía microscópica práctica, Bilbao, Ed. Urmo.

Langdon, G. S.; Chung Kim Yuen S. and Nurick G. N. (January 2005) Experimental and numerical studies on the response of quadrangular stiffened plates. Part III: localised blast loading. International Journal of Impact Engineering; vol. 31, n.º 1, pp. 85-111.

Lamajeyathilagam K., & Vendhan C. P. (July, 2004) “Deformation and rupture of thin rectangular plates subjected to underwater shock”, in Internattional Journal of Impact Engineering, vol. 30, n.º6, pp. 699-719.

Meier, M. (2004) The Hall-Petch Relationship. Department of Chemical Engineering and Materials Science. University of California.

Meyers, M. A. (1994) Dynamic Behavior of Materials.

New York, Ed. John Wiley & Sons Inc.

Neely, J. (2001) Metalurgia y materiales industriales. México, Limusa.

Pochetino, A. (agosto de 2005) “Propiedades mecánicas de los materiales”[ponencia]. III Congreso Internacional de Materiales, (2005). Cartagena de Indias.

Shin,Y. S. (2004) “Ship shock modelling and simulation

for far-field underwater explosion”. Computers & Structures, vol. 82, pp. 2211-2219.

Standard Test Methods for Tension Testing of Metallic

Materials: E 8–00b. ASTM Standards in Building Codes (2000), West Conshohocken, PA, pp. 1-21

How to Cite

Alarcón Ahumada, J. A., Fajardo Cuadro, J., Useche Vivero, J., Cano Restrepo, C., & Ramírez Wilches, D. (2008). Caracterización mecánica y microestructural de acero naval sometido a cargas dinámicas por explosión. Ciencia Y tecnología De Buques, 1(2), 17–26. Retrieved from https://shipjournal.co/index.php/sst/article/view/9

Issue

Section

Scientific and Technological Research Articles
QR Code