Generating fuzzy autopilot for ship maneuvering

Authors

  • Juan A. Contreras Montes Escuela Naval Almirante Padilla - Facultad de Ingeniería Naval. Cartagena, Bolívar. Colombia.
  • Fernando J. Durán Martínez Escuela Naval Almirante Padilla - Facultad de Ingeniería Naval. Cartagena, Bolívar. Colombia.
  • Alejandro Castro Celis

DOI:

https://doi.org/10.25043/19098642.55

Keywords:

ship maneuvering, heading control, fuzzy identification, intelligent control

Abstract

This paper introduces a method to generate autopilots for ship headings by using issues from the observation of control actions performed by human operators. The controller is designed based on fuzzy logic and uses triangular membership functions for the antecedent and consequent functions for Singleton type. For an automatic adjustment of the consequential, the recursive least squares method was used. This method is used to generate and validate the course driver of a 350-m tanker, at different load conditions.

Downloads

Download data is not yet available.

References

AMERONGEN J., Adaptive steering of ship. A model reference approach to improved manoeuvering and economical course keeping. Ph.D. thesis, Delft University of Technology, the Netherlands. 1982.

ÅSTRÖM K.J. AND WITTENMARK B. Adaptive Control. Reading, MA: Addison Wesley. 1989.

BABUSKA, R. Fuzzy and Neural Control. Disc Course Lecture Notes. Delft University of Technology. Delft, the Netherlands. 2001.

CHAE, Y., OH, K., LEE, W. AND KANG, G.. “Transformation of TSK fuzzy system into fuzzy system with singleton consequents and its application”. IEEE International Conference on Fuzzy Systems. IEEE Computational Intelligence Society, Vol. 2,. pp.: 969-973. 1999.

CONTRERAS, J., MISA, R., MURILLO, L. “Obtención de Modelos Borrosos Interpretables de Procesos Dinámicos”. RIAI: Revista Iberoamericana de Automática e Informática Industrial, vol. 5, No. 3, pp. 70-77. Jul. 2008.

CONTRERAS, J., MISA, R., MURILLO, L. “Interpretable Fuzzy Models from Data and Adaptive Fuzzy Control: A New Approach”. IEEE International Conference on Fuzzy Systems. IEEE Computational Intelligence Society. pp.: 1591-1596. Jul. 2007.

DU, J., GUO, CH. “Nonlinear Adaptive Ship Course Tracking Control Based on Backstepping and Nussbaum Gain”. Proceeding of the 2004 American Control Conference Boston, Massachusetts, pp. 3845-3850, July, 2004.

ESPINOSA, J. VANDEWALLE, J. Constructing Fuzzy Models with Linguistic Integrity from Numerical Data-Afreli Algorithm, IEEE Trans. Fuzzy Systems, Vol. 8, No. 5, pp. 591 – 600. Oct. 2000.

ESPINOSA, J., VANDEWALLE, J., WERTZ, V., Fuzzy Logic, Identification and Predictive Control. Springer. USA. 2005.

FOSSEN, T. I. “Marine Control Systems. Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles”. Marine Cybernetics. Trondheim, Norway. 2002.

TZENG, CH-Y., CHEN, J.F. “Fundamental Properties of Linear Ship Steering Dynamic Models”, Journal of Marine Science and Technology, Vol. 7, No. 2, pp. 79-88. 1999.

WITKOWSKA, A., SMIERZCHALSKI, R., “Nonlinear Bacsteeping Ship Course Controller”, R&RATA, vol, 1, No. 2, pp. 147-155. Jun. 2008.

WITKOWSKA, A., TOMERA, M., SMIERZCHALSKI, R., “A Bacsteeping Approach to Ship Course Control”, Int. Journal Appl. Math. Comput. Sci., Vol. 17, No. 1, pp. 73–85, 2007.

PASSINO, K, Y YURKOVICH, S. Fuzzy Control. Addison-Wesley. California. (pp. 301-390). 1998.

PEDRIYCZ, W. Why Triangular Membership Functions?”, IEEE Trans. Fuzzy Sets and System, vol. 64, pp.21-30, 1994.

Downloads

Published

2011-07-23

How to Cite

Contreras Montes, J. A., Durán Martínez, F. J., & Castro Celis, A. (2011). Generating fuzzy autopilot for ship maneuvering. Ciencia Y tecnología De Buques, 5(9), 107–114. https://doi.org/10.25043/19098642.55

Issue

Section

Scientific and Technological Research Articles
QR Code