Eletromechanical model of a based catamaran vessel

Authors

  • Laura María Núñez Álvarez Universidad Nacional de Colombia, Medellín, Colombia.
  • Juan Camilo Urbano Gómez Universidad Nacional de Colombia, Medellín, Colombia.
  • Juan Pablo Giraldo Grajales Universidad Nacional de Colombia, Medellín, Colombia.
  • Andrés David Wagner Arenas Universidad Nacional de Colombia, Medellín, Colombia.
  • Daniel Padierna Vanegas Universidad Nacional de Colombia, Medellín, Colombia.
  • Obed Pantoja Hernández Universidad Nacional de Colombia, Medellín, Colombia.
  • José Mauricio Jaramillo Pulgarín Universidad Nacional de Colombia, Medellín, Colombia.
  • Johan Gerardo Morales Barbosa Universidad Nacional de Colombia, Medellín, Colombia.

DOI:

https://doi.org/10.25043/19098642.225

Keywords:

electromechanical model, catamaran, energy consumption, boat design, phenomenological modeling

Abstract

The objective of this research is to provide a tool that allows to quantify the power requirements, energy consumption and the efficiency of the propulsion system of a catamaran with two degrees of freedom according to its speed. Furthermore, it seeks to improve the design process from a phenomenological perspective that gives rise to a better reliability of the result. To achieve this, an electromechanical model is being developed by using the methodology for obtaining phenomenological-based semi-physical models. This model couples the dynamics of a geometry-known ship with its propulsion system, which is constituted by a propeller and a brushless direct current (BLDC) electric motor; at the same time, it uses data from computational simulations related to the hydrodynamics of the submerged components. Finally, the results of using the model with parameters of a specific catamaran and motor are presented. This model allows to properly couple the dynamics of a boat with two degrees of freedom.

Downloads

Download data is not yet available.

Author Biographies

Laura María Núñez Álvarez, Universidad Nacional de Colombia, Medellín, Colombia.

Universidad Nacional de Colombia, Facultad de Minas, Semillero de investigación Hydrómetra: Movilidad Sostenible, Medellín, Colombia.

Juan Camilo Urbano Gómez, Universidad Nacional de Colombia, Medellín, Colombia.

Universidad Nacional de Colombia, Facultad de Minas, Semillero de investigación Hydrómetra: Movilidad Sostenible, Medellín, Colombia.

Juan Pablo Giraldo Grajales, Universidad Nacional de Colombia, Medellín, Colombia.

Universidad Nacional de Colombia, Facultad de Minas, Semillero de investigación Hydrómetra: Movilidad Sostenible, Medellín, Colombia.

Andrés David Wagner Arenas, Universidad Nacional de Colombia, Medellín, Colombia.

Universidad Nacional de Colombia, Facultad de Minas, Semillero de investigación Hydrómetra: Movilidad Sostenible, Medellín, Colombia.

Daniel Padierna Vanegas, Universidad Nacional de Colombia, Medellín, Colombia.

Universidad Nacional de Colombia, Facultad de Minas, Semillero de investigación Hydrómetra: Movilidad Sostenible, Medellín, Colombia.

Obed Pantoja Hernández, Universidad Nacional de Colombia, Medellín, Colombia.

Universidad Nacional de Colombia, Facultad de Minas, Semillero de investigación Hydrómetra: Movilidad Sostenible, Medellín, Colombia.

José Mauricio Jaramillo Pulgarín, Universidad Nacional de Colombia, Medellín, Colombia.

Universidad Nacional de Colombia, Facultad de Minas, Semillero de investigación Hydrómetra: Movilidad Sostenible, Medellín, Colombia.

Johan Gerardo Morales Barbosa, Universidad Nacional de Colombia, Medellín, Colombia.

Universidad Nacional de Colombia, Facultad de Minas, Semillero de investigación Hydrómetra: Movilidad Sostenible, Medellín, Colombia.

References

A. F. MOLLAND, S. R. TURNOCK, AND D. A. HUDSON, "Propulsive Power," in Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power, 2nd ed., Cambridge University Press, 2017, pp. 7-11. https://doi.org/10.1017/9781316494196.004

L. BIRK, "Ship Hydrodynamics," in Fundamentals of Ship Hydrodynamics, John Wiley & Sons, Ltd, 2019, pp. 1-9. https://doi.org/10.1002/9781119191575.ch1

E. C. TUPPER, "Introduction to Naval Architecture," Fifth Edition., Oxford: Butterworth-Heinemann, 2013. https://doi.org/10.1016/B978-0-08-098237-3.00001-1

V. BERTRAM, "Chapter 3 - Resistance and Propulsion," in Practical Ship Hydrodynamics (Second Edition), Second Edition., V. Bertram, Ed. Oxford: Butterworth-Heinemann, 2012, pp. 73-141. https://doi.org/10.1016/B978-0-08-097150-6.10003-X

M. MARTELLI, I. ALESSIO, M. VIVIANI, M. ALTOSOLE, D. GRASSI, AND C. BONVINO, "A simulation approach for planing boats propulsion and manoeuvrability," Te International Journal of Small Craft Technology, vol. 158, pp. 29-42, Apr. 2016, doi: 10.3940/rina.ijsct.2016.b1.180. https://doi.org/10.3940/rina.ijsct.2016.b1.180

L. BARELLI et al., "Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat," Energies, vol. 11, no. 10, 2018, doi: 10.3390/en11102592. https://doi.org/10.3390/en11102592

H. ABROUGUI, H. BOUAICHA, H. DALLAGI, C. ZAOUI, AND N. SAMIR, "Study and modeling of the electric propulsion system for marine boat," Apr. 2019, pp. 173-180, doi: 10.1109/ASET.2019.8871052. https://doi.org/10.1109/ASET.2019.8871052

T. I. FOSSEN, Guidance and control of ocean vehicles. Chichester, England: John Wiley & Sons, 1999.

H. MOUSAZADEH et al., "Developing a navigation, guidance and obstacle avoidance algorithm for an Unmanned Surface Vehicle (USV) by algorithms fusion," Ocean Engineering, vol. 159, pp. 56-65, Apr. 2018, doi: 10.1016/j.oceaneng.2018.04.018. https://doi.org/10.1016/j.oceaneng.2018.04.018

A. GRM, "Mathematical model for riverboat dynamics," Shipbuilding, vol. 68, pp. 25-35, Apr. 2017, doi: 10.21278/brod68302. https://doi.org/10.21278/brod68302

Z. JI AND Y. HUANG, "Autonomous boat dynamics: How far away is simulation from the high sea?," Apr. 2017, pp. 1-8, doi: 10.1109/OCEANSE.2017.8084927. https://doi.org/10.1109/OCEANSE.2017.8084927

B. KOSSEILA, M. B. CAMARA, AND B. DAKYO, "Transient Power Control for Diesel-Generator Assistance in Electric Boat Applications Using Supercapacitors and Batteries,"IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. PP, p. 1, Apr. 2017, doi: 10.1109/JESTPE.2017.2737828. https://doi.org/10.1109/JESTPE.2017.2737828

M. NOORIZADEH AND N. MESKIN, "Design of small autonomous boat for coursekeeping manuevers," in 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), 2017, pp. 908-912, doi: 10.1109/CoDIT.2017.8102712. https://doi.org/10.1109/CoDIT.2017.8102712

H. ALVAREZ, J. GARCIA-TIRADO, AND C. BUILES-MONTANO, "Phenomenological based semi-physical modeling for glucose homeostasis in human body," in 2017 IEEE 3rd Colombian Conference on Automatic Control, CCAC 2017 - Conference Proceedings, Jan. 2018, vol. 2018-January, pp. 1-7, doi: 10.1109/CCAC.2017.8276471 https://doi.org/10.1109/CCAC.2017.8276471

M. MIYAMASU AND K. AKATSU, "Efficiency comparison between Brushless dc motor and Brushless AC motor considering driving method and machine design," in IECON Proceedings (Industrial Electronics Conference), 2011, pp. 1830-1835, doi: 10.1109/IECON.2011.6119584 https://doi.org/10.1109/IECON.2011.6119584

M. M. MOMENZADEH, A. F. AHMED, AND A. TOLBA, "Modelling and Simulation of Te BLDC Electric Drive System Using SIMULINK/MATLAB for a Hybrid Vehicle," 2014. Accessed: Apr. 13, 2021. [Online]. Available: https://www.researchgate.net/publication/262933380_Modelling_and_Simulation_of_Te_BLDC_Electric_Drive_System_Using_SIMULINKMATLAB_for_a_Hybrid_Vehicle.

N. MURUGANANTHAM AND S. PALANI, "State space modeling and simulation of sensorless permanent magnet BLDC motor," International Journal of Engineering Science and Technology, vol. 2, no. 10, pp. 5099-5106, Oct. 2010, Accessed: Apr. 13, 2021. [Online]. Available: https://www.researchgate.net/publication/50361161_State_space_modeling_and_simulation_of_sensorless_permanent_magnet_BLDC_motor.

Downloads

Published

2022-01-30

How to Cite

Núñez Álvarez, L. M., Urbano Gómez, J. C., Giraldo Grajales, J. P., Wagner Arenas, A. D., Padierna Vanegas, D., Pantoja Hernández, O., … Morales Barbosa, J. G. (2022). Eletromechanical model of a based catamaran vessel. Ciencia Y tecnología De Buques, 15(30), 15–25. https://doi.org/10.25043/19098642.225

Issue

Section

Scientific and Technological Research Articles
QR Code