Design and validation by the finite element method of the structural arrangement of a riverine low draft combat boat

  • David Alvarado COTECMAR, Cartagena, Colombia.
  • Edinson Flores COTECMAR, Cartagena, Colombia.
  • Edwin Paipa COTECMAR, Cartagena, Colombia.
Keywords: Scantling, direct analysis, aluminum hulls, riverine combat boats

Abstract

Inland navigation in shallow waters with partially submerged objects and riparian vegetation might represent severe restrictions to patrolling operations of the Colombian Navy. Consequently, there is a need for a riverine combat and reconnaissance boat with the ability to operate in 0.4 m depth shallow waters and which structural arrangement is to be designed according to maritime classification societies and operational requirements of the navy. The aim of this work is to explain and to validate the 20 knots, 3.8 tons of displacement, 8.6 m length, 2.6 m beam and 0.35 m draft boat scantling by guidelines of the classification societies and hence, improving and validating by direct analysis the hull structural arrangement.

Downloads

Download data is not yet available.

Author Biographies

David Alvarado, COTECMAR, Cartagena, Colombia.

COTECMAR, División de Diseño e Ingeniería, vía Mamonal km 9. Cartagena, Colombia.

Edinson Flores, COTECMAR, Cartagena, Colombia.

COTECMAR, División de Diseño e Ingeniería, vía Mamonal km 9. Cartagena, Colombia.

Edwin Paipa, COTECMAR, Cartagena, Colombia.

COTECMAR, División de Diseño e Ingeniería, vía Mamonal km 9. Cartagena, Colombia.

References

F. ALVAREZ Y M. L. MEDINA, Guerra Fluvial Irregular: Fuerzas de Combate en los Rios de América, Madrid: IDS. Navantia, 2012.

COTECMAR, «BCFBC. Manual de Usario,» Cartagena de Indias, 2020.

A. B. o. S. ABS, Rules for building and classing. High-Speed craft. Part 3: Hull Construction and Equipment, Houston, TX. USA: ABS, 2020.

International Organization for Standarization, Small Craft - Hull construction and Scantlings - Part 5: Design pressures for monohulls, design stresses, scantlings determinaion, ISO, 2014.

Det Norske Veritas Germanischer Lloyd´s DNV-GL, DNV-GL-CG-027- Class Guideline- Finite Element Analysis, 2015.

B. YONG Y J. WEI-LIANG , «Chapter 8 - Scantling of Ship's Hulls by Rule,» de Marine Structural Design, Butterworth-Heinemann, 2016, pp. 153-170. https://doi.org/10.1016/B978-0-08-099997-5.00008-3

K. ANYFANTIS, «Ultimate strength of stiffened panels subjected to non-uniform thrust,» International Journal of Naval Architecture and Ocean Engineering, vol. 12, pp. 325-342, 2020. https://doi.org/10.1016/j.ijnaoe.2020.03.003

D. VAN TUYEN , B. LIU, Y. GARBATOV, W. WU Y C. GUEDES SOARES, «Strength assessment of aluminium and steel stiffened panels with openings on longitudinal girders,» Ocean Engineering, vol. 200, 2020. https://doi.org/10.1016/j.oceaneng.2020.107047

J. K. PAIK, «Characteristics of welding induced initial deflections in welded aluminum plates,» Thin-walled Structures, vol. 45, pp. 493-501, 2007. https://doi.org/10.1016/j.tws.2007.04.009

Ship Structure Committe, SSC-218 Design Considerations for Alluminum Hull Structures, Washington D.C: Ship Structure Committe, 1971.

R. SIELSKI, «Research needs in aluminum structure,» Ships and Offshore Structures, vol. 3, pp. 57-65, 2008. https://doi.org/10.1080/17445300701797111

N. NAZEMI, F. GHRIB Y J. SOKOLOWSKI, «The HAZ in Aluminum Welding Revisited,» 3rd Specialty Conference on Engineering Mechanics and Materials, 2013.

J. PAIK, J. LEE, M. RYU, Y. JANG, H. RENAUD Y P. HESS, «Mechanical buckling collapse testing on Aluminium stiffened plate structures for marine applications,» The World Maritime Technology Conference, 2006.

M. COLLETTE, «Strength and Reliability of Aluminium Stiffened Panels,» Ph.D submission School of Marine Science and Technology, Faculty of Science, Agriculture and Engineering, University of Newcastle, 2005.

B. CHEN Y C. GUEDES SOAREs, «A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates,» Journal of Marine Science and Application, vol. 17, pp. 57-67, 2018. https://doi.org/10.1007/s11804-018-0007-7

P. HERRINGTON Y R. LATORRE, «Development of an aluminum hull panel for high-speed craft,» Marine Structures, vol. 11, pp. 41-71, 1998. https://doi.org/10.1016/S0951-8339(97)00008-7

B. LIU, R. VILLAVICENCIO Y G. S. SOARES, «On the failure criterion of lowvelocity impact by a spherical indenter,» International Journal of Mechanical Sciences, vol. 80, pp. 1-15, 2014. https://doi.org/10.1016/j.ijmecsci.2013.12.015

B. LIU, S. WANG, R. VILLAVICENCIO Y C. GUEDES SOARES, «Slamming load and hydroelastic structural reponse og bow flare areas of aluminium fast displacement crafts,» Ocean Engineering, 2020. https://doi.org/10.1016/j.oceaneng.2020.108207

B. YONG Y J. WEI- LIANG, «Chapter 8: Ship Hull Scantling Design by Analysis,» de Marine structural design, 2016, pp. 171-180. https://doi.org/10.1016/B978-0-08-099997-5.00009-5

American Bureau of Shipping, Guidance notes on Structural Direct Analysis for High-Speed Craft, Houston: ABS, 2018.

Lloyd´s Register, Rules for the manufacture, testing and certifications of materials, London: Lloyd's Register Group, July 2020.

COTECMAR, «Cálculos de Escantillonado del Bote de Combate Fluvial de Bajo Calado - BCFBC,» Cartagena de Indias, 2020.

E. NIEME, W. FRIKLE Y S. MADDOX, «Structural Hot- spot Stress Determination Using Finite Element Analysis,» de Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components, IIW Collection, 2018. https://doi.org/10.1007/978-981-10-5568-3

Lloyd´s Register, Rules and regulations for the classification of special service craft, London, July 2020.

Published
2021-07-31
How to Cite
Alvarado, D., Flores, E., & Paipa, E. (2021). Design and validation by the finite element method of the structural arrangement of a riverine low draft combat boat. Ciencia Y tecnología De Buques, 15(29), 21-35. https://doi.org/10.25043/19098642.218
Section
Scientific and Technological Research Articles