Fatigue Analysis of the Structural Bottom of an Aluminum Planing Craft through Vibratory Load of the Propeller System

  • José Marín
  • Carlos Cuenca


This work analyzed the structural fatigue of a high-speed craft, which has a propeller system formed by two 493-hpengines connected through speed multipliers to water jet systems. Its aluminum alloy structure has combined-typeframing. The useful life of the boat bottom’s structure was determined considering the cyclical loads generatedby the propulsion system, using the Finite Elements method and applying the effort-number method of cycles tofailure. For this, a structural model was developed of the selected zone, which was analyzed with the SAP2000program, to obtain complex amplitudes of the stress supported by the structure. Thereafter, with these results thestress range was determined and, then, using S-N curves for Aluminum the number of cycles that needed to becarried out by six structural details selected was determined, for its failure. Using Miner’s Rule, combined with thecraft’s assumed work modes, the time of the useful life time of the referential details selected during an hour wasdetermined. Finally, if the craft operates for three hours per day, the bottom structure of the boat analyzed wouldhave a useful life of 14.5 years, when working principally in low speed rating.


Download data is not yet available.

Author Biographies

José Marín
ESPOL. 1Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y RR.NN. Guayaquil, Ecuador
Carlos Cuenca
SLEM S.A. Guayaquil, Ecuador


AEROSPACE SPECIFICATION METALS Inc. MatWeb. [Online]. http://asm.matweb.com/ search/SpecificMaterial.asp?bassnum=MA5086H116

AMERICAN BUREAU OF SHIPPING, "Guide for Building and Classifying High-speed Craft". ABS, 2012.

AMERICAN BUREAU OF SHIPPING, "Structural Direct Analysis for High Speed Craft". ABS, 2011.

ASTINAVE E.P., Memoria Técnica de la Lancha Guayas. Guayaquil, 2011.

BANNANTINE, J., COMER, J., and HANDROCK, J., Fundamentals of Metal Fatigue Analysis. Pearson Edition, 1990.

CUENCA, C., Determinación de la Vida Útil del fondo de una embarcación construida en Aluminio por Carga Vibratoria del Sistema Propulsivo. Tesis de Ingeniería Naval, FIMCBOR, ESPOL, Guayaquil, 2014

DET NORSKE VERITAS, Rules for Classification of Speed, Light Craft, and Naval Surface Craft, DNV, 2011.

European Committee for Standardization, Eurocode 9: Design of Aluminium Structures, Brussels, 2011.

HAMILTON JET, Manual de diseño de la serie HJ de Hidrojets, 2007.

KOROTKIN, A., Added Masses of Ship Structures. Springer, 2009.

LONG, CH., Propellers, Shafting, and Shafting System Vibration Analyses, Cap. X en Marine Engineering, Harrington, Ed., SNAME, 1992.

MARÍN, J., MIRANDA, L., and MACAS, F., Análisis de resultados propulsivos en una lancha planeadora de 11 m. Jornadas Técnicas sobre Propulsión de Buques, Colegio de Ingenieros Navales del Ecuador, Guayaquil, 2011.

MORENO, V., Motores de Combustión Interna, Vol. II. Escuela Técnica Superior de Ingenieros Navales, Madrid, 1980.

OTERO, C., Tipología y análisis de fallos en la estructura de los buques mercantes, 2ª parte. Revista Ingeniería Naval, Nov. 2004.

How to Cite
Marín, J., & Cuenca, C. (2015). Fatigue Analysis of the Structural Bottom of an Aluminum Planing Craft through Vibratory Load of the Propeller System. Ciencia Y tecnología De Buques, 8(16), 57-75. https://doi.org/10.25043/19098642.111
Scientific and Technological Research Articles