Desarrollo de Materiales para Aplicaciones Marítimas, Fluviales y Militares

Autores/as

  • Fabio A. Suarez- Bustamante Department of Materials, Faculty of Mines, Universidad Nacional de Colombia, Medellín
  • Orlando D. Barrios-Revollo Department of Materials, Faculty of Mines, Universidad Nacional de Colombia, Medellín
  • Anderson Valencia DynaComp S.A.S. Calle 80 Sur # 47 D163 - Bodega 1, Sabaneta
  • Juan P. Hernandez-Ortiz Institute for Molecular Engineering, University of Chicago, Chicago, IL

DOI:

https://doi.org/10.25043/19098642.164

Palabras clave:

Materiales Compuestos, Diseño de Materiales, aplicaciones Militares, Mecanismos de Disipación de Energía de Impacto, Aplicaciones Navales y Fluviales

Resumen

Utilizando los múltiples mecanismos de disipación de la energía de impacto a alta velocidad, hemos desarrollado una plataforma de diseño de materiales compuestos de matriz polimérica, especiales para aplicaciones militares en navegación fluvial y marítima.  Nuestros compuestos pretenden hacer sinergia entre las capacidades de disipación de cerámicos y fibras de alto desempeño, los cuales son utilizados como los elementos de refuerzo en los laminados de bajo peso.  El diseño del material es combinado con herramientas de procesamiento y técnicas avanzadas de caracterización que resultan en laminados consistentes de alta repetibilidad, trazabilidad y alta calidad.  La plataforma parte de la identificación de los mecanismos de disipación y de una caracterización detallada de la resina polimérica, el cual incluye un diagrama de Tiempo-Temperatura-Transformación que provee las condiciones óptimas de procesamiento.  Nuestros diseños abren rutas novedosas para aplicaciones militares, los cuales incluyen amplios portafolios de protección, versatilidad geométrica, resistencia mecánica y confiabilidad

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

ZUKAS, J.A., NICHOLAS, T., SWIFT, H., GRESZCZUK, L.B., CURRAN, D.R. Impact Dynamics. John Wiley & Sons, USA 1982, 452p.

SRIVATHSA, B., RAMAKRISHNAN, N. (1999). Ballistic performance maps for thick metallic armour. Journal of Materials Processing Technology 96, 81-91.

DEMIR, T., UBEYLI, M., YILDIRIM, R.O. (2008). Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile. Materials and Design 29, 2009-2016.

OZSAHIN, E., TOLUN, S. (2010). Influence of surface coating on ballistic performance of aluminum plates subjected to high velocity impact loads. Materials and Design 31, 1276-1283.

OZSAHIN, E., TOLUN, S. (2010). On the comparison of the ballistic response of coated aluminum plates. Materials and Design 31, 3188-3193.

BORVIK, T., FORRESTAL, M.J., HOPPERSTAD, O.S., WARREN, T.L., LANGSETH, M. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles - Calculations. International Journal of Impact Engineering 36 (2009) 426-437.

BORVIK, T.,CLAUSEN, A.H., HOPPERSTAD, O.S., LANGSETH, M. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles— experimental study. International Journal of Impact Engineering 30 (2004) 367-384.

DEY, S., B0RVIK, T., HOPPERSTAD. O.S., LANGSETH, M. On the influence of constitutive relation in projectile impact of steel plates. International Journal of Impact Engineering 34 (2007) 464-48.

DEY, S., B0RVIK, T., HOPPERSTAD. O.S., LANGSETH, M. On the influence of fracture criterion in projectile impact of steel plates. Computational Materials Science 38 (2006) 176-191.

UBEYLI, M., DEMIR, T., DENIZ, H., YILDIRIM,R.O., KELES, O. Investigation on the ballistic performance of a dual phase steel against 7.62mm AP projectile. Materials Science and Engineering A 527 (2010) 20362044.

MISHRA,B.,JENA,P.K.,RAMAKRISHNA, B., MADHU, V., BHAT, T.B., GUPTA, N.K. Effect of tempering temperature, plate thickness and presence of holes on ballistic impact behavior and ASB formation of a high strength steel. International Journal of Impact Engineering 44 (2012) 17-28.

MEDVEDOVSKI, E. (2001). Wear-resistant engineering ceramics. Wear 249, 821-828.

NAIK, N.K., SHRIPAO, P., REDDY, B.C.K. (2006) Ballistic impact behaviour of woven fabric composites: Formulation. International Journal of Impact Engineering 32, 1521-1552.

HOO-FATT M.S., SIRIVOLU, D. (2010). A wave propagation model for the high velocity impact response of a composite sandwich panel. International Journal of Impact Engineering 37, 117-130.

REYES, G., CANTWELL, W.J. (2004). The high velocity impact response of composite and FML-reinforced sandwich structures. Composites Science and Technology 64, 35-54.

GRUJICIC, M., ARAKERE, G., HE, T., BELL, W.C., CHEESEMANB, B.A., YENB, C.F., SCOTT, B. (2008). A ballistic material model for cross-plied unidirectional UHMWPE fiber-reinforced armor-grade composites. Materials Science and Engineering A 498, 231-241.

Technical Guide Kevlar - Aramid Fiber. DuPond, 32p: www.kevlar.com.

LANE, R. High Performance Fibers for Personnel and Vehicle Armor Systems-Putting a Stop to Current and Future Threats. AMPTIAC Rome, NY: http://ammtiacalionscience.com/pdf/AMPQ9_2ART01.pdf

Tawron - a versatile high-performance fiber. TEIJIN, 7p: http://www.teijinaramid.com/aramids/twaron/

Technora. TEIJIN: http://www.teijinaramid.com/aramids/technora/

Honeywell Gold Shield® GV-2016: www. honeywell.com/spectra

Dyneema: http://www.dyneema.com/americas/applications/life-protection.aspx

POB Fiber Zylon. TOYOBO CO., LTD, 18p: www.toyobo.co.jp

MEDVEDOVSKI, EUGENE. Alumina- mullite ceramics for structural applications. Ceramics International 32 (2006) 369-375.

MEDVEDOVSKI, EUGENE. Ballistic performance of armour ceramics: Influence of design and structure. Part 1. Ceramics International 36 (2010) 2103-2115.

MEDVEDOVSKI, EUGENE. Ballistic performance of armour ceramics: Influence of design and structure. Part 2. Ceramics International 36 (2010) 2117-2127.

KARAMIS, M.B. Tribology at high-velocity impact. Tribology International 40(2007) 98-104.

KARAMIS, M.B., NAIR, F., CERIT, A.A. The metallurgical and deformation behaviours of laminar metal matrix composites after ballistic impact. Journal of Materials Processing Technology 209 (2009) 4880-4889.

KARAMIS, M.B., CERIT, A.A., NAI, F. Surface characteristics of projectiles after frictional interaction with metal matrix composites under ballistic condition. Wear 261 (2006) 738-745.

GAMA, B.A., GILLESPIE, J.W. Punch shear based penetration model of ballistic impact of thick-section composites. Composite Structures 86 (2008) 356-369.

XIAO, J.R., GAMA, B.A., GILLESPIE, J.W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading. Composite Structures 78 (2007) 182-196.

ERKENDIRCI, O.F., (GAMA) HAQUE, B.Z. Quasi-static penetration resistance behavior of glass fiber reinforced thermoplastic composites. Composites: Part B xxx (2012) xxx-xxx

MORYE, S.S., HINE, P.J., DUCKETT, R.A., CARR, D.J., WARD, I.M. Modelling of the energy absorption by polymer composites. Composites Science and Technology 60 (2000) 2631-2642.

Lightweight ballistic composites - Military and Law enforcement applications. Edited by Ashok Bhatnagar. Woohead Publishing Limited, Cambridge, England, 2006, 428p.

SARVA, S., NEMAT-NASSER, S., MCGEE, J., ISAACS, J. The effect of thin membrane restraint on the ballistic performance of armor grade ceramic tiles. International Journal of Impact Engineering 34 (2007) 277-302.

QUN WANG, ZHAOHAI CHEN, ZHAOFENG CHEN. Design and characteristics of hybrid composite armor subjected to projectile impact. Materials and Design 46 (2013) 634-639.

CORRAN, R.S.J., SHADBOLT, P.J., RUIZ, C. Impact Loading of Plates - An Experimental Investigation. Int. J. Impact. Engng. Vol 1 No. 1 (1983) pp3-22.

Dey, S., Borvik, T., Teng, X., Wierzbicki, T., Hopperstad, O.S. On the ballistic resistance of double layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures 44 (2007) 6701-6723.

HOCKAUF, M., MEYER, L.W., PURSCHE, F., DIESTEL, O. Dynamic perforation and force measurement for lightweight materials by reverse ballistic impact. Composites: Part A 38 (2007) 849 - 857.

FLORES, A., ANIA, F., BALTÁ-CALLEJA, F.J. From the glassy state to ordered polymer structures: A microhardness study. Polymer 50 (2009) 729-746.

Publicado

2018-03-20

Cómo citar

Suarez- Bustamante, F. A., Barrios-Revollo, O. D., Valencia, A., & Hernandez-Ortiz, J. P. (2018). Desarrollo de Materiales para Aplicaciones Marítimas, Fluviales y Militares. Ciencia Y tecnología De Buques, 11(22), 63–75. https://doi.org/10.25043/19098642.164

Número

Sección

Artículos científicos y tecnológicos
QR Code