Durability study of polymeric ballistic panels used in riverine combat boats under humidity-aged and impact fatigue conditions

Authors

DOI:

https://doi.org/10.25043/19098642.260

Keywords:

ultra-high molecular weight polyethylene, crack propagation behavior, low draft river combat boats, effect of moisture, impact fatigue

Abstract

Low Draft River Combat Boats are equipped with a set of armored panels on the deck and attached to the sides to protect the crew. These shields are composed of laminated panels made of ultra-high molecular weight polyethylene fibers with a polyurethane resin matrix. The use of these panels results in a weight reduction of approximately 50% compared to traditional armor. However, the polymeric nature of these panels makes them susceptible to degradation of their mechanical properties over time under operational environmental conditions.
This study evaluates the effect of moisture and temperature on the durability and crack propagation behavior of these ballistic panels under impact fatigue conditions through experimental procedures.

Downloads

Download data is not yet available.

Author Biographies

Nohora Jiménez, Universidad de Los Andes

Universidad de Los Andes, Bogotá, Colombia.

Juan Pablo Casas Rodriguez, Universidad de Los Andes

Universidad de Los Andes, Bogotá, Colombia.

David Alvarado, Science and Technology Corporation for Naval

Corporación de Ciencia y Tecnología para el desarrollo de la Industria Naval Marítima y Fluvial-COTECMAR. Cartagena, Colombia.

References

Anónimo, «La Armada Colombiana incorpora dos de los ocho botes de Combate Fluvial de Bajo Calado previstos,» Infodefensa, 2021.

F. P. Cook, Characterization of UHMWPE Laminates for High Strain Rate Applications, Virginia Tech, 2010.

M. a. C. L. a. X. R. a. F. Q. Cao, Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness, vol. 227, Elsevier, Ed., Composite Structures, 2021, p. 114638. https://doi.org/10.1016/j.compstruct.2021.114638

L. a. K. M. a. R. Z. a. L. D. a. W. X. a. W. B. a. Y. L. a. Y. J. Shanmugam, Enhanced mode I fracture toughness of UHMWPE fabric/ thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes, vol. 178, Elsevier, Ed., 2019, p. 107450. https://doi.org/10.1016/j.compositesb.2019.107450

L. H. a. L. T. R. a. R. S. a. R. W. a. M. A. P. a. O. A. C. Nguyen, A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact, vol. 84, Elsevier, Ed., Composites Part A: Applied Science and Manufacturing, 2016, pp. 224--235. https://doi.org/10.1016/j.compositesa.2016.01.014

DSMBrand, «Inflamabilidad del Dayneema,» 2007.

N. a. S. G. Pagano, Delamination of polymer matrix composites: problems and assessment, Elsevier, 2000. https://doi.org/10.1016/B0-08-042993-9/00073-5

U. d. l. Andes, Curso de manufactura de placas de protección balística, Bogotá: Universidad de los Andes, 2012.

D. Brand, Recommended Pressure Cycle (metric), Holanda: Royal DSM NV, 2009.

A. AC09036782, «Standard test method for mode I interlaminar fracture toughness of unidirectional fiber- reinforced polymer matrix composites,» ASTM Internat., 2007.

A. Industrie, Manual de uso, Italia: EMMAS, 2011.

M. a. L. R. A. a. O. A. A. a. S. S. W. Deng, Study of creep behavior of ultra-high- molecular-weight polyethylene systems, vol. 40, W. O. Library, Ed., Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998, pp. 214-223. https://doi.org/cfbmmb

Downloads

Published

2025-01-31

Issue

Section

Scientific and Technological Research Articles
QR Code