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Metamodeling Techniques for 
Multidimensional Ship Design Problems

Metamodels, also known as surrogate models, can be used in place of computationally expensive simulation 
models to increase computational efficiency for the purposes of design optimization or design space exploration. 
Metamodel-based design optimization is especially advantageous for ship design problems that require either 
computationally expensive simulations or costly physical experiments. In this paper, three metamodeling 
methods are evaluated with respect to their capabilities for modeling highly nonlinear, multimodal functions 
with incrementally increasing numbers of independent variables. Methods analyzed include kriging, radial basis 
functions (RBF), and support vector regression (SVR). Each metamodeling technique is used to model a set of 
single-output functions with dimensionality ranging from one to ten independent variables and modality ranging 
from one to twenty local maxima. The number of points used to train the models is increased until a predetermined 
error threshold is met. Results show that each of the three methods has its own distinct advantages. 

Los metamodelos, también conocimos como modelos substitutos, pueden ser utilizados en lugar  de modelos 
cuyas simulaciones tienen un costo computacional muy alto, incrementado con esto la eficiencia en procesos 
de optimización de diseños o en el diseño de exploraciones espaciales. La optimización de diseños basados en 
metamodelos es especialmente ventajosa en problemas de diseño relacionado con vehículos marinos en los cuales se 
requieran simulaciones con un alto costo computacional o bien de experimentos con una alta inversión en equipos. 
En este artículo se evalúan tres métodos para el desarrollo de metamodelos. La evaluación de estos métodos es 
desarrollada teniendo en cuenta la capacidad de cada uno de ellos para modelar funciones multimodales no lineales 
con un número creciente de variables independientes. Dentro de los métodos analizados se encuentran el método 
de kriging, el método de funciones de base radiales, y el método de regresión con vector de apoyo. Cada una de 
las anteriores técnicas para la generación de metamodelos es utilizada para modelar un grupo de funciones de una 
salida con dimensiones variando desde uno hasta  diez variables independientes y una modalidad variando entre 
uno y veinte máximos locales. El número de puntos utilizados para entrenar los modelos es incrementado hasta 
que el error alcanza una tolerancia predeterminada. Los resultados obtenidos muestran que cada uno de los tres 
modelos tiene sus propias ventajas distintivas.   

Key words: Metamodeling, kriging, radial basis functions, support vector regression, metamodel-based design 
optimization.
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Computer models of naval systems and 
other physical systems are often complex and 
computationally expensive, requiring minutes 
or hours to complete a single simulation run. 
While the accuracy and detail offered by a well 
constructed computer model are indispensable, 
the computational expenseof many models makes 
it challenging to use them for design applications. 
For example, objective functions for ship hull 
design problems commonly include payload, ship 
speed, motions, and calm-water drag (Percival 
et al., 2001). In many cases, computational fluid 
dynamics (CFD) models are used as tools to 
analyze performance characteristics of candidate 
designs (Periet al., 2001). Unfortunately, CFD 
simulations tend to be computationally expensive 
and time consuming to execute and therefore 
limit a designer’s ability to explore a broad range 
of configurations or interface the simulation 
with design optimization algorithms that require 
numerous, iterative solutions.

To remedy this situation, metamodel scan 
bedeveloped as surrogates of the computer model 
to provide reasonable approximations in a fraction 
of the time. Metamodels are developed using a 
set of training points from a base model. Once 
built, the metamodel is used in place of the base 
model to predict model responses quickly and 
repeatedly. For example, a metamodel built using 
a set of training points from a CFD model could 
enable ship designers to find satisfactory hull forms 
more rapidly than by using the base model alone. 
Other possible applications of metamodels to ship 
design problems include optimization of marine 
energy systems (Dimopouloset al., 2008), propeller 
design (Watanabe et al., 2003), and marine vehicle 
maneuvering problems (Racine and Paterson, 
2005). In this paper, the focus will be on designing 
thermal systems for ship applications.

The best metamodeling method for a particular 
application depends on the needs of the project 
and the nature of the base model that is to be 
approximated. Five common criteria for evaluating 
metamodels include:

•	 Accuracy: Capability of predicting new points 
that closely match those generated by the base 
model.

•	 Training	Speed: Time to build the metamodel 
with training data from the base model.

•	 Prediction	Speed: Time to predict new points 
using the constructed metamodel.

•	 Scalability: Capability of accommodating 
additional independent variables.

•	 Multimodality: Capability of modeling 
highly nonlinear functions with multiple 
regions of local optimality (modes).

No single metamodeling method has emerged 
as universally dominant. Rather, individual 
techniques have strengths and weaknesses.
Selection of the method is dependent on several 
factors such as the nature of the response function, 
and the availability of training data. Methods 
that most frequently appear in the literature are 
response surface methodology (RSM) (Box and 
Wilson, 1951), multivariate adaptive regression 
splines (MARS) (Friedmanl, 1991), support vector 
regression (SVR) (Vapniket al., 1997), kriging 
(Sacks et al., 1989), radial basis functions (RBF) 
(Hardy, 1971), and neural networks (Haykin, 
1999).

In this research study, kriging, radial basis 
functions (RBF), and support vector regression 
(SVR) are used to model a set of functions with 
varying degrees of scale and multimodality. In 
Section 2, related research is reviewed, and the 
rationale for selecting kriging, RBF, and SVR 
for this study is discussed. In Section 3, the test 
functions and experimental design for this study 
are explained. Results are presented in Section 4, 
and closing remarks are made in Section 5.

Polynomial Regression
Polynomial regression (PR) (Box and Wilson, 1951) 

Introduction

Review of Metamodeling Methods
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models the response as an explicit function of the 
independent variables and their interactions. The 
second order version of this method is given in (1):

where the xi are the independent variables and 
the βi are coefficients that are obtained with least 
squares regression.
 
Polynomial regression is a global approximation 
method that presumes a specific form of the 
response (linear, quadratic, etc.). Therefore, 
polynomial regression models are best when the 
base model is known to have the same behavior 
as the metamodel. Studies have shown that 
polynomial regression models perform comparable 
to kriging models, provided that the base function 
resembles a linear or quadratic function (Giunta 
and Watson, 1998; Simpson et al., 1998).

Kriging
Kriging (Sacks et al., 1989) consists of a combination 
of a known global function plus departures from 
the base model, as shown in (2):

where βi are unknown coefficients and the fi(x)’s are 
pre-specified functions (usually polynomials). Z(x) 
provides departures from the underlying function 
so as to interpolate the training points and is the 
realization of a stochastic process with a mean of 
zero, variance of σ2, and nonzero covariance of the 
form

where R is the correlation function which is 
specified by the user. In this study, a constant term 
is used for f(x) and a Gaussian curve of the form in 
(4) is used for the correlation function:

where the θi terms are unknown correlation 
parameters that are determined as part of the model 
fitting process. The automatic determination of the 
θi terms makes kriging a particularly easy method 
to use. Also, contrary to polynomial regression, 
a krigingmetamodelof this form will always pass 
through all of the training points and therefore 
should only be used with deterministic data sets.

Kim et al. (Kim et al., 2009) show that kriging 
is a superior method when applied to nonlinear, 
multimodal problems. In particular, kriging 
outperforms its competitors when the number of 
independent variables is large. However, it is well 
documented that kriging is the slowest with regard 
to build time and prediction time compared with 
other methods (Jin et al., 2001; Ely and Seepersad, 
2009).

Radial Basis Functions
Radial basis functions (Hardy, 1971)  use a linear 
combination of weights and basis functions whose 
values depend only on their distance from a 
given center, xi. Typically, a radial basis function 
metamodel takes the form (5):

where the wi is the weight of the ith basis function, 
ϕi. In this study, a Gaussian basis function of the 
form in (6) is used to develop the metamodels for 
testing:

where k is a user specified tuning parameter.
Radial basis function metamodels are shown 
to besuperior in terms of average accuracy and 
ability to accommodate a large variety of problem 
types (Jin et al., 1999). However, Kim et al. (Kim 
et al., 2009) show that prediction error increases 
significantly for RBF as the number of dimensions 
increases. This pattern suggests caution must be 
used when applying RBF to high dimensional 
problems to ensure that proper tuning parameters 
are used. RBF is also shown to be moderately more 
computationally expensive than other methods 
such as polynomial regression (Fang et al., 2005).

(1)

(2)

(5)

(6)

(3)

(4)
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Support Vector Regression
In support vector regression (Vapniket al., 1997), 
the metamodel takes the form given in (7):

where the a terms are Lagrange multipliers, k(xi,x) 
is a user specified kernel function, and b is the 
intercept. The a terms are obtained by solving the 
following dual form optimization problem:

In (8) and (9), l is the number of training points, 
ɛ is a user defined error tolerance, and C is a cost 
parameter that determines the trade-off between 
the flatness of  the ŷ and the tolerance to deviations 
larger than ɛ. In this study, a Gaussian kernel 
function of the form in (10) is used to construct 
the metamodels for testing:

where g is a user specified tuning parameter.
Clarke et al. (Clarke et al., 2005) indicate that SVR 
has the lowest level of average error when applied 
to a set of 26 linear and non-linear problems when 
compared to polynomial regression, kriging, RBF, 
and MARS. SVR has also been shown to be the 
fastest method in terms of both build time and 
prediction time (Ely and Seepersad, 2009). An 
unfortunate drawback of SVR is that accurate 
models depend heavily on the careful selection of 
the user defined tuning parameters (Lee and Choi, 
2008).

Multivariate Adaptive Regression Splines
Multivariate adaptive regression splines (MARS) 
(Friedmanl, 1991) involves partitioning the 
response into separate regions, each represented by 

their own basis function. In general, the response 
has the form given in (11):

where am are constant coefficients and Bm(x) are 
basis functions of the form

In the Equation (12), Km is the number of splits 
in the Mth basis function, sk,m take values ±1, xv(k,m)  
are the test point variables, and tk,m represent the 
knot locations of each of the basis functions. The 
subscript “+” indicates that the term in brackets is 
zero if the argument is negative. MARS adaptively 
partitions the design space into sub-regions that 
have their own regression equations, which enables 
it to model nonlinear and multimodal responses in 
high dimensional space.

MARS is shown to predict as well as other 
methods, but only when a large set of training data 
is available (Wang et al., 1999, Jin et al., 2001).
Using MARS is particularly challenging compared 
with other methods due to the number of user 
defined parameters that must be selected. When a 
large number of basis functions is required to build 
an accurate model (i.e. nonlinear, multimodal), the 
build time for MARS can be prohibitively large.

Based on the literature reviewed in the previous 
section, several conclusions can be made about 
the various metamodeling methods. In general, 
polynomial regression models can be built and 
executedvery quickly, even in high dimensions. 
However, polynomial response surfaces are unable 
to predict highly non-linear and multimodal 
functions in multiple dimensions. On the other 
hand, kriging and radial basis functions are both 
capable of modeling nonlinear and multimodal 
functions with higher computation time than 
polynomial regression. Multivariate adaptive 
regression splines are capable of modeling 
multimodal functions in high dimensional space, 

(7)
(11)

(12)

(8)

(9)

(10)
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Backlund, Shahan, Seepersad

Ship Science & Technology - Vol. 4 - n.° 7 - (43-54) July 2010 - Cartagena (Colombia)



47

but often require large training data sets and are 
computationally expensive to build. Support vector 
regression, which appears to be the most promising 
method reviewed here, is shown to be capable of 
modeling high dimensional multimodal functions 
accurately with minimal computational expense.

The functions that are modeled in this study range 
from one to ten dimensions and have modality 
ranging from one to twenty modes. Polynomial 
response surfaces are tedious and difficult to 
construct for multimodal functions due to the 
exploding number of possible interaction terms 
that are available for inclusion in the final model. 
MARS has been shown to be able to model the 
general behavior of multimodal functions (Jin 
et al., 1999), but it fails to predict new points 
accurately at the local maxima and minima. For 
these reasons, kriging, radial basis functions, and 
SVR are the primary methods considered in this 
study.

To test the ability of polynomial regression, 
kriging, RBF, and SVR to model functions in high 
dimensional space, four test functions are used.  
The first three are generated using a kernel density 
estimation (KDE) method. The KDE method 
generates functions in any number of dimensions, 
containing any number of kernels, where the 
number of kernels dictates the modality of the 
resulting surface. The fourth test function is an 
analytical model of a common engineering system: 
a two stream counter-flow heat exchanger.

The need to create test problems of arbitrary 
dimensionality, D, and arbitrary modality, N, (the 
number of local maxima or minima) motivates 
the kernel density estimation (KDE) method. The 
KDE, also known as a Parzen window (Parzen, 
1992), is formulated according to (13) as an average 
of N kernel functions, K, in product form (Scott, 
1992).

The shape of the KDE is controlled by the kernel 
function, the kernel centers, xj, and the smoothing 
parameters, hi. For this research, the triweight 
kernel function (Scott, 1992), shown in Equation 
(14), was used for its smoothness and for the fact 
that it is not a Gaussian function which was used 
as a basis function for some of the metamodeling 
techniques studied.

Creating a kernel function of arbitrary 
dimensionality is straightforward. However, 
controlling the modality is a bigger challenge for 
which careful consideration of the kernel centers 
and smoothing parameters is necessary. For the 
choice of kernel centers, a certain amount of 
randomness is desired in the resulting function 
such that it is unique and its structure is unknown 
in advance of modeling it. However, a certain 
amount of control over placement of the kernel 
centers is needed for creating the requested 
number of distinct peaks and distributing them 
throughout the design space. This challenge was 
met by choosing the kernel centers sequentially 
such that the next center, xN+1, is the minimum of 
the KDE based on the previous N center points 
(Equation 15). The first center is chosen from a 
uniform distribution over the input space.

This method places the next kernel center at 
the location of minimum density; hence, the 
resulting sequence of kernel centers fills the 
space approximately uniformly. The input space 
is searched for the minimum using multi-start 
sequential quadratic programming (fmincon in 

(13)

(14)

(15)

Multidimensional, Multimodal Kernel 
Based Functions

Test Functions and Experimental 
Design
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MATLAB®), stopping if more than one second 
elapses or  less than 1% improvement occurs for 
5 consecutive sequential quadratic programming 
iteration.Although this procedure is not guaranteed 
to find the global minimum, finding the global 
minimum is not imperative; we only need to find a 
point in a low density region.  
As for the choice of smoothing parameter, setting it 
too small will result in a surface with spiky peaks at 
each kernel center, while setting it too large creates 
humps with maxima that are not necessarily 
located at the kernel center. However, for the case 
of the triweight kernel function, one can guarantee 
an N-modal function by setting the smoothing 
parameter to 95% of the minimum Euclidean 
distance between any two kernel centers.

The KDE method is used to create three multimodal 
functions that are scaled from one through ten 
dimensions (i.e., one through ten independent 
variables). In the first scenario, there are N = 2 
kernels (modes) regardless of the dimensionality 
of the problem.  In the second scenario, there are 
N = D kernels, i.e. the number of modes is equal 
to the number of independent variables. Lastly, in 
the third scenario, there are N = 2D kernels and 
the number of modes is always equal to twice 
the number of independent variables. Posing the 
problem in this way creates a unique challenge for 
the metamodeling methods. Specifically, the effect 
of scaling the number of independent variables 
can be investigated directly for different levels of 
modality.

Two Stream Counter-Flow Heat 
Exchanger

Cold Steam Inlet

Hot Steam Inlet

Hot Steam Exit

Cold Steam Exit

Fig. 1a. Two-stream counter-flow heat exchanger. (Mills, 1998)

Fig. 1b. Hot and cold stream temperature
 profiles. (Mills, 1998)
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L
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In addition to the functions generated using the 
KDE method, a two stream, counter-flow shell 
and tube heat exchanger, such as that used in a 
shipboard freshwater cooling loop, is used as an 
example function. A schematic of this type of heat 
exchanger is shown in Fig. 1a. The heat exchanger 
features a bundle of conductive tubes inside a 
cylindrical shell. The hot and cold streams flow in 
opposite directions resulting in temperature profiles 
similar to those shown in Fig. 1b. The working 
fluid in the hot and cold streams is assumed to be 
fresh liquid water. The temperature dependence of 
the fluid properties is not ignored, and the outer 
surface of the shell is assumed to be adiabatic.
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at a time in the order listed in Table 1. The variables 
whose main effects have the most curvature are 
added last in an effort to exploit weaknesses of any 
particular method in high dimensional space.

Training and Test Point Sampling Strategy
The method for sampling training points from 
the base model can have a significant effect on the 
accuracy of the resulting metamodel. In contrast 
to physical experiments, which are stochastic in 
nature, deterministic computer models are not 
subjected to repeated sampling because their 
predictions typically do not vary unless the input 
variables change. Therefore, sampling strategies for 
computer experiments aim to fill the design space 
as uniformlyas possible (Koehler and Owens, 1996). 
There are several so-called space filling designs such 
as Latin hypercube designs (Mckayet al., 1979), 
Hammersley sequence sampling (Hammersley, 
1960), orthogonal arrays (Owen, 1992), and 
uniform designs (Fang et al., 2000). 

Simpson et al. (Simpson et al., 2002) find that 
uniform designs and Hammersley sequence 

The output of this model is the overall heat transfer 
rate from the hot stream to the cold stream. This 
response, given by (16), is obtained by multiplying 
the maximum theoretical heat transfer rate by the 
heat exchanger effectiveness ɛ:

where

and

In (17), ṁh and ṁc are the mass flow rates of the hot 
and cold streams in the heat exchanger, respectively. 
The Cp,h and Cp,c terms refer to the specific heats of 
the hot and cold streams, respectively. In (18), UA 
is the overall heat transfer coefficient between the 
two fluids and is calculated using a combination of 
conductive and convective heat transfer equations 
(Mills, 1998). Lastly, the maximum theoretical 
heat transfer rate is given by (19):

where TH,in and TC,in are the hot stream and cold 
stream inlet temperatures, respectively. A thorough 
explanation and derivation of this heat exchanger 
model is provided in (Mills, 1998).

Ten independent variables from the above heat 
exchanger model are selected for this study.  The 
variables and response are listed in Table 1, along 
with their respective symbols and units. The 
variables listed in Table 1 are self explanatory with 
the exception of the flow area ratio. This variable 
is the ratio of the cross sectional area of the fluid 
flowing through the shell to the total shell area. It 
is an indicator of how tightly packed the tubes are 
within the shell.

To create the one through ten variable test problems 
that are used in this study, variables are added one 

Experimental Design

Table 1. Heat exchanger model response 
and independent variables

(16)

(17)

(18)

(19)

Model Response

Response Symbol Units

Overall heat transfer rate W

Model Variables

Variable Symbol Units Main Effect

Cold stream inlet 
temperature TC,in K Quasi-Linear

Hot stream inlet 
temperature TH,in K Quasi-Linear

Tube thickness T m Quasi-Linear

Flow Area Ratio Ar n/a Quasi-Linear

Tube fouling heat 
resistance Rf m2K/W Quasi-Linear

Cold stream flow rate ṁC kg/s Exponential

Hot stream flow rate ṁH kg/s Exponential

Shell length L m Exponential

Number of tubes N Integer Exponential

Tube inner diameter D m Quasi-
Quadratic

Metamodeling Techniques for Multidimensional Ship Design Problems
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sampling tend to fill the design space more evenly 
and provide more accurate results than Latin 
hypercube designs and orthogonal arrays. They 
also show that Hammersley sequencing is preferred 
to uniform designs when large sets of training 
data can be afforded. In contrast to an expensive 
computer simulation, all of the test functions 
used in this paper can be sampled rapidly and 
large sets of training data are available. Therefore, 
Hammersley sequence sampling is selected as the 
method for generating training and test points in 
this study.

Performance Assessment
In this study, the metamodeling techniques are 
evaluated based on the number of training points 
needed to achieve a predetermined error metric. 
The error metric used is the relative average absolute 
error (RAAE) and is given by (20):

where yi is the actual value of the base model at 
the ith test points, ŷi is the predicted value from the 
metamodel, n is the number of sample points, and 
σ is the standard deviation of the response.
  
To determine the requirednumber of training 
points, the quantity of training points is increased 
continuously until an RAAE value of 0.25 is 
achieved. The training points are generated with 
Hammersley sequence sampling. The RAAE is 
calculated using one hundred test points per 
variable (100D), which are also generated with a 
Hammersley sequence.
  
One issue with this testing strategy is the possibility 
that some of the training points and test points 
overlap. For example, in the 1D case, all of the 
training points will overlap with test points if the 
number of test points is divisible by the number of 
test points. Overlapping is to be avoided because 
testing interpolating methods (kriging and RBF) 
at the trainingpoints results in zero error. To avoid 
overlapping in the 1D problem, 101 test points (a 
prime number) are used. In higher dimensions, 

test points and training points do not overlap in a 
Hammersley sequence provided that the number 
of training points does not equal the number test 
points.

In addition to the number of sample points 
necessary to achieve the pre-specified error metric, 
the computational times required to build each 
model and to predict the 100D test points are also 
recorded. All experiments are performed on a 32-
bit PC with an Intel Pentium® Dual-Core 2.50 
GHz processor with 4.00 GB of RAM.

Table 2 includes a summary of the tests to be 
performed. Metamodels are created in one through 
ten dimensions for the heat exchanger model 
and three kernel density estimation functions of 
varying modality. Performing this task with all 
three of the metamodeling methods results in a 
total of 120 tests.

Graphical representations of the results of the 
study are provided in Figs. 2 to 5. In each figure, 
the abscissa indicates the dimensionality of each 
problem, while the ordinate represents the number 
of training points required to meet the error 
threshold of RAAE <0.25. The center of each circle 
represents the number of training points required 
for the specific dimension and metamodeling 
method. The size of the solid circles represents the 
relative training time for each metamodel and the 
translucent circles represent the relative prediction 

(20)

Tests Performed

Test Test Function Scale Test Points Termination 
Criteria

1 2 mode kernel

1-10D
100*D

(101 in 1D) RAAE < 0.25

2 D mode kernel

3 2D mode 
kernel

4 Heat 
Exchanger

Table 2. Complete experimental plan

Results and Discussion

Backlund, Shahan, Seepersad
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time for 100D new data points. A complete 
tabulation of the numerical results is provided in 
Appendix A.

For all three of the kernel based functions, the 
general trend is that the required number of 
training points scales linearly with the number 

Fig. 2. N = 2 mode KDE results

Fig. 5. Heat exchanger model

Fig. 3. N = D mode KDE results

Fig. 4. N = 2D mode KDE results
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Required Number of Training Points

of dimensions. Also, the functions with higher 
modality require a higher number of training 
points. In most cases, radial basis function 
metamodels require the smallest number of 
training points of the three methods, followed by 
support vector regression. Kriging metamodels 
tend to need the highest number of training points 
of all. 
 
Th e ability of radial basis functions and support 
vector regression to model the base functions with 
few training points can be attributed partially 
to careful selection of user-defi ned tuning 
parameters. Recall from equations (6) and (10) that 
the Gaussian basis and kernel functions contain 
tuning parameters k and g for radial basis functions 
and support vector regression, respectively. Th e 
value of these parameters has a signifi cant eff ect on 
the quality of the resulting metamodel fi t. In this 
study, these parameters were selected by trial and 
error until optimal values were obtained. Kriging, 
on the other hand, has correlation parameters 
θi that are identifi ed automatically during the 
fi tting process. Th is automated identifi cation of 
the correlation parameters is eff ective but requires 
signifi cant computational expense.

Th e results of the heat exchanger are slightly 
diff erent than those of the kernel function. Th e 
required number of training points to model the 
heat exchanger in most dimensions is very similar 
for kriging and radial basis functions, with support 
vector regression needing only slightly more in a few 
cases. Generally speaking, all methods are able to 
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approximate the heat exchanger model accurately 
with very few training points when compared to 
the highly modal and nonlinear function produced 
using the kernel density estimation method. For 
the heat exchanger model, the required number of 
training points increases sharply after 6 dimensions. 
This result is expected because the variables with 
the most nonlinear effects are added to the model 
last, as explained in section 3.2.

Training and prediction times are represented 
qualitatively in Figs. 2 – 5 by the size of the solid 
and translucent circles, respectively. The general 
trend in all four cases is that the training and 
prediction times of all methods increase with the 
number of dimensions. Support vector regression 
has the smallest training times in all cases. Kriging 
is slightly slower than radial basis functions when 
applied to low modality problems in low dimensions. 
Training times for radial basis functions become 
very large compared to kriging when applied to 
high modality, high dimensional problems. The 
theory behind support vector regression is very 
computationally efficient (Clarke et al., 2005), and 
other comparison studies have confirmed its low 
training times (Ely and Seepersad, 2009). Build 
times for kriging are expected to be slow because 
it must perform a nonlinear optimization to obtain 
the correlation parameters. The slow training times 
for radial basis functions in highly nonlinear, 
multidimensional problems stems from the large 
number of training points required to train an 
accurate model. During the build process, the 
RBF method must compute Euclidean distances 
between adjacent training points. The number of 
these calculations increases dramatically when the 
number of dimensions and training points is large.

The manner in which the training times 
increase with dimensions also varies among the 
metamodeling methods. The training times for 
kriging appear to increase linearly with the scale 
of the problem, but the training times for RBF 
and SVR begin to increase sharply in the higher 
dimensional problems. If this trend were extended 
into very high dimensions, it is possible that the 

training times for SVR may actually approach or 
exceed those of kriging.

Support vector regression is also seen to have by far 
the smallest prediction times of the three methods 
studied. This trend is also consistent with previous 
studies (Clarke et al., 2005; Ely and Seepersad, 
2009). Kriging has the slowest prediction times 
of the three methods, being as much as ten times 
larger than radial basis functions in some cases. 
Kriging and radial basis function are expected to 
have large prediction times because the distances 
between points must be computed during the 
simulation process (Jin et al., 1999).

Prediction time not only depends on the method 
used and the scale of the problem, but also on the 
type of problem being modeled. Even though the 
number of test points is the same for each respective 
dimension of each problem, the prediction time 
increases with the modality of the problem. That 
is, it takes a given method longer to predict 1000 
new points for a more complex problem than it 
does for a simple one.

In this paper, three types of metamodels—
kriging, radial basis functions, and support vector 
regression—are compared with respect to their 
speed, accuracy, and required number of training 
points for test problems of varying complexityand 
dimensionality. Radial basis functions are found 
to model and predict the test functions to a 
predetermined level of global accuracy with the 
smallest number of training points for most 
functions. In most cases, kriging metamodels 
need the highest number of training points of the 
three methods. Kriging has faster model building 
times than radial basis functions, but it is slower 
to predict new data points. Both methods are 
very slow to train and predict new points when 
compared to support vector regression.

Metamodel-based optimization has numerous 
potential applications in the field of marine 
engineering and ship design. Building ship 
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prototypes and conducting full scale physical 
experiments are often too expensive or time 
consuming to be practical in the early stages of the 
design process, thus driving the need for complex 
computer models. Using metamodels in place of 
computationally expensive computer models and 
simulations can drastically reduce design time and 
enable ship designers to explore larger regions of 
the feasible design space.
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