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SPH Boundary Deficiency Correction 
for Improved Boundary Conditions at 

Deformable Surfaces

Smoothed particle hydrodynamics (SPH) is a meshless, Lagrangian CFD method. SPH often utilizes 
static virtual particles to correct for integral deficiencies that occur near boundaries. These virtual 
particles, while useful in most cases, can be difficult to implement for objects which experience large 
deformations. As an alternative to virtual particles, a repulsive force algorithm is presented which loosely 
emulates the presence of virtual particles in the SPH momentum equation.

La Hidrodinámica de Partículas Suavizadas (Smoothed Particle Hydrodynamics, SPH) es un método 
CFD Lagrangiano sin malla (Mecánica de Fluidos Computacional, CFD). El método SPH frecuentemente 
utiliza partículas estáticas virtuales para corregir las deficiencias integrales que ocurren cerca de las 
fronteras. Estas partículas virtuales, aunque son útiles en la mayoría de los casos, pueden ser difíciles de 
implementar para objetos que experimentan grandes deformaciones. Como alternativa a las partículas 
virtuales, se presenta un algoritmo de fuerza repulsiva que emula indirectamente la presencia de las 
partículas virtuales en la ecuación de momento del método SPH.
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Smoothed particle hydrodynamics was fi rst 
developed for applications in astrodynamics [1][2].
SPH was later adapted to fl uid dynamics due to 
its ability to effi  ciently simulate complex free 
surface fl ows. It is based on the ability of a kernel 
function to approximate a fi eld value at a point 
by integrating over surrounding fi eld values. A 
kernel function is a fi nite area approximation of 
the Dirac delta function. Th e SPH approximation 
can be seen by fi rst considering the integration 
result of the product of a fi eld and the Dirac delta 
function (Eqn 1a). Th is integration exactly yields 
the fi eld value at the location of the Dirac delta 
function. By replacing the discontinuous Dirac 
delta with a kernel function possessing similar 
properties (but defi ned over a fi nite area) a useful 
approximation of fi eld functions can be obtained 
(Eqn 1b). Th is formula can then be discretized 
to obtain an equation applicable to Lagrangian 
particle dynamics (Eqn 1c). In the discretization, 
Wij is the value of the kernel function between a 
subject particle (i) and an infl uencing particle ( j) 
with Aj as the area or volume associated with the 
infl uencing particle [8].

Th e integration limits for Eqn 1a can be infi nite 
with identical results. However, because the 
integration product is zero everywhere except 
at x' = x, the integration limits can be reduced 
to encompass only the point x. Similarly, most 
kernel functions with compact support domain are 
defi ned as zero beyond a set radius. It follows that 
the integration/summation region for Eqns 1b and 
1c need only encompass the region in which the 
kernel function is defi ned to be non-zero.

A classic kernel function, described by Monaghan 
and Lattanzio, is the Cubic-spline function (Fig.  
1) [12].

Th e Cubic-spline kernel function is defi ned as non-
zero for all r < 2h (where h is a scaling parameter 
typically based on particle mass). It follows that the 
integration domain Ω of equation 1b is the region 
within a radius of 2h of the point x. Similarly, 
for equation 1c the support domain particles (Ω) 
consist of all particles within 2h of the subject 
particle i as illustrated in Fig. 2.

Th e SPH method can be applied to fl uid dynamics 
in a number of ways. A common technique to adapt 
SPH to fl uid dynamics is Weakly Compressible 
Smoothed Particle Hydrodynamics (WCSPH). In
WCSPH, fl uids typically considered nearly 
incompressible are allowed a small degree of 
compressibility. Th is yields a fi nite speed of sound 
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The continuity density formulation instead 
calculates the velocity divergence for each particle. 
Because the velocity divergence of a fluid is 
equivalent to the time rate-of-change of density this 
value can be integrated over time to obtain density 
change. The corresponding particle discretized 
formula for the continuity density formulation is 
shown in equation 4 [8].

Particle acceleration is determined from the stress 
tensor for each particle        . The stress tensor 
can be separated into translational (pressure) 
and viscous shear stresses. Shear stress can be 
approximated as the product of fluid's dynamic 
viscosity (µ) and strain rate tensor           . For 
inviscid cases (µ=0), the particle discretized 
momentum equation reduces to a simple pressure-
force summation. Equation 5 shows the particle 
discretized SPH momentum equation [8].

where

for the fluid and changes the characteristic of the 
governing equations to allow for uncoupled solving 
of particle properties. Particle pressures are derived
from an equation of state. The parameters of the 
equation of state determine the numerical speed of
sound in that medium. The Tait Equation (Eqn 
2) is a commonly used equation of state for water 
simulations [13].

Two common methods exist to calculate SPH 
particle density, these are the summation and 
continuity density formulations. The summation 
density formulation directly determines density 
by summing the kernel-weighted densities of all 
support domain particles (Eqn 3a). Substituting 
the definition of density (Eqn 3b) into Eqn 3a 
yields Eqn 3c [8] and tranforms the formula into 
a mass summation over an implied volume (the 
kernel function has units of inverse volume).
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Assuming uniformly distributed particles in an 
unbounded region, the SPH particle discretized 
governing equations approach the Navier 
Stokes governing equations as smoothing length 
approaches zero. The unbounded assumption is 
required to satisfy that fluid field values exist at all 
points within a particle's support domain. When 
a particle's support domain has an insufficient 
number of particles to adequately approximate 
the fluid field values within its support radius it 
is said to be integral or boundary deficient. One 
way in which this can occur is if particle smoothing 
radius is set to a small value such that very few 
particles fall within a support radius, in this case 
the SPH governing equations will yield poor 
approximations of field functions. Because of this 
smoothing radius is typically empirically related to 
particle mass and density such that an acceptable 
influence radius is maintained. A second more 
complicated manner in which integral deficiency 
can occur is observable when a particle is within 
close proximity to a fluid boundary. This situation is 
shown in Figure 3, which plots particle acceleration 
of a finite 1D constant pressure fluid. While there 
exists no pressure gradient in the fluid, near-
boundary particles exhibit a non-zero acceleration 
or boundary deficiency in acceleration.

This behavior is desirable at free surfaces for single-
phase simulations as the boundary

deficiency behaves identically to a zero gauge 
pressure fluid. However, boundary deficiency leads 
to difficulties at fluid-object boundaries. Relatively 
robust boundary conditions can be created by using
repulsion forces based on spatial proximity (see 
[3][4][5]). However, because of the lack of a 
pressure term to correct for boundary deficiency, 
proximity-based repulsion boundaries tend to yield 
a nonphysical varying fluid particle to wall spacing 
at equilibrium. Typically this boundary deficiency 
is addressed by populating boundary regions with 
virtual particles whose properties are either fixed 
or derived from nearby fluid particles (see [6][7]). 
Robust boundary conditions which do not exhibit 
varying particle wall separation distance can be 
obtained by combining a spatial repulsive boundary
with virtual particles [8][9][10]. However, for cases 
in which large boundary deformations can occur, 
virtual particle placement can become problematic 
due to virtual particle clumping. Clumping is a 
particle artifact in which particle spacing becomes 
skewed such that a directional spacing bias is 
present. This can result in an integral deficiency or 
surplus which increases the error of calculated field
values. Fig. 4 shows an example of fixed virtual 
particle clumping due to boundary deformation.
Visible in Fig. 4 is clumping resultant from 
deforming a boundary (shown in red). In the 
convex deformation case, near-boundary fluid 
particles experience a virtual particle integral 
surplus. Likewise, concave deformations lead to an 
integral deficiency.

SPH Boundary Behavior
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It is therefore desirable to provide an alternative to 
virtual particles for boundary deficiency correction 
of highly deformable objects. While various 
correction methods exist which achieve similar 
results, they are often computationally expensive. 
Feldman and Bonet developed one such method to
correct boundary deficiency for straight and corner 
boundaries by generating a curve fit to boundary 
deficiency accelerations [11].

While the goal is to achieve a boundary 
deficiency correction for arbitrary boundaries, it 
is advantageous to first consider the simple case of 
a 1-dimensional boundary. By observation of the 
boundary deficiency of a one dimensional fluid as 
in Fig. 3, it apparent that the boundary deficiency 
is similar in shape to the smoothing function. 
Analyzing equation 5 acting at a boundary and 
assuming constant pressure, density, and mass, the 
momentum equation can be reduced as shown in 
equation 6.

Equation 6 shows that the acceleration boundary 
deficiency is proportional to the total area of the 
deficiency as well as fluid pressure. Because cases 
of interest typically involve non-constant pressures 
equation 6 is not strictly suitable for use as a 
boundary correction. However proportionality to 
the kernel function for boundary deficiency can 
stil be observed even in cases in which a pressure 
gradient is present. Fig. 5 illustrates one such case. 
Shown in Fig. 5 is the vertical acceleration of a 

unity density fluid influenced by a downward body 
acceleration of unity magnitude.

The pressure at the top of the water column is zero 
(gauge pressure), with pressure in the fluid varying
as dp/dz=−ρg. The boundary deficiency in 
acceleration at the bottom of the water column still 
strongly correlates to the kernel function even in 
the presence of a pressure gradient. It is interesting 
to note that a boundary deficiency exists not only 
at the bottom boundary but also at the free surface. 
However, the low magnitude boundary deficiency 
at the free surface does not introduce substantial 
error as it typically results in only minor particle 
clumping.

While an exact acceleration boundary deficiency 
correction could be gained by discerning the 
pressure gradient normal to a surface and analyzing 
the geometry of the deficiency, such an approach 
would increase computational complexity. Instead 
a simple -if inexact- correction is suggested in which
the pressure is assumed to be nearly constant over 
the scale of the smoothing length. Then by assuming 
a known boundary acceleration, the relative fluid-
boundary acceleration in the absence of boundary
forces can be calculated. If this relative acceleration 
is assumed to be the result of a boundary 

Fig. 4. Clumping of Virtual Particles due to Deformation

Fig. 5. Vertical Water Column Boundary Deficiency 
(influence radius=1)
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defi ciency then it can be corrected by applying a 
repulsive acceleration distributed as CWij away 
from the boundary. Where C is determined by 
choosing a sample particle, determining the 
relative particleboundary normal acceleration 
and dividing by Wij . To improve robustness it is 
advisable to average C over a small sample of near-
boundary particles. Th is reduces correction error 
due to spurious pressure fl uctuations. Equation 7 
shows this one dimensional acceleration boundary 
defi ciency correction with j representing a boundary 
particle index.

where

Th e assumption that a boundary acceleration is 
known is suitable for fi xed boundaries but requires 
an approximation when applied to freely moving 
boundaries. For objects with much greater density 
than the surrounding fl uid, forward interpolation 
of acceleration is acceptable as object acceleration 
will change only slowly relative to the simulated 
timescales when acted on by fl uid forces alone. 
However, as relative object-fl uid density decreases, 
this approximation worsens. Further work is 
necessary to assess the impact of this assumption 
on low density object dynamic behavior.

While the correction presented in equation 7 is 
suffi  cient for one dimensional cases where a single 
boundary particle governs a boundary defi cient 
region, extension to higher dimensions requires a 
blending of corrections from multiple boundary 
particles. An empirical weighting function to blend
correction values for two dimensional cases is 
shown in equation 8. Fig. 6 shows a visualization 
of the resultant weights.

(where Ω´ is the set of all boundary particles within 
rinfl uence of particle i)

(where 'spacing' is the local boundary particle 
spacing)

Fig. 6 illustrates the weighting scheme applied 
to simple concave and convex boundaries. Th e 
weights of the three boundary particles are shown 
by the blue, green, and red shades respectively.

Th e boundary defi ciency correction is applied to 
two test cases (one with a rectangular boundary, 
one with an elliptical boundary) each with constant 
pressure fl uid. Fig. 7 shows the rectangular tank 
case.

(7)

(8)

Fig. 6. 2D Boundary Correction Weight 
Blending Visualization (infl uence radius=0.775, 

boundary spacing=0.25, boundary radius of curvature=1)
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Fig. 6. 2D Boundary Correction Weight 
Blending Visualization (infl uence radius=0.775, 

boundary spacing=0.25, boundary radius of curvature=1)

Fig. 7. Rectangular Tank Boundary Correction Test Case (infl uence radius=0.5 spacing=rinfl uence/10)
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plotted against boundary particle index (the zeroth 
boundary particle is located in the lower left with 
subsequent indexes moving counterclockwise about 
the rectangular tank). Fig. 8 shows the elliptical 
tank case with identical fl uid and simulation 
parameters.

Th e four dips in correction acceleration visible in 
fi gure 7 (rectangular case) are due to the change in
boundary defi ciency due to the reduced volume 
of fl uid present near the four tank corners. Th e 
correction slightly overcorrects the boundary 
defi ciency in the sharp corners of the rectangular 
case. For the elliptical tank case, the acceleration 
present after boundary defi ciency correction near 
the high curvature sides of the elliptic tank represents 
an undercorrection of the boundary defi ciency and 
is likely a result of weighting function. Further 
refi nement of the weighting function may reduce 
the error in the correction due to geometry. Th e 
low curvature and straight sections show good 
correction of acceleration boundary defi ciency.

Because the correction presented emulates virtual 
particles, it alone is insuffi  cient to act as a boundary 
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Fig. 8. Elliptical Tank Boundary Correction Test Case (infl uence radius=0.5 spacing=rinfl uence/10)
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condition. A secondary repulsion force such as the 
spatial repulsion force developed by Monaghan in 
2009 [5] is necessary to prevent fl uid-boundary 
penetration. Th e presence of virtual particles or a 
boundary acceleration defi ciency corrective force 
can improve the behavior of spatial repulsive 
boundary forces. Th is is especially noticeable in 
the transient behavior present at the start of most 
simulations involving spatial repulsive forces alone. 
By correcting the boundary acceleration defi ciency 
immediately, near-boundary fl uid particles do not 
have to re-orient to allow for a spatial change to 
correct the boundary repulsion force.

Similar boundary acceleration correction work 
performed by Feldman and Bonet [11] does not 
require an assumption of a known boundary 
acceleration, but instead determines an acceleration
correction by calculating the fl uid pressure gradient 
and assuming a known boundary geometry 
(straight or straight-corner). Further work is 

required to compare the relative performance of the 
two methods when applied to various cases.

Virtual particles are normally used to correct 
errors due to integral defi ciencies that appear in 
the governing equations near boundaries. Virtual 
particle behavior for deformable objects can be 
diffi  cult to implement due to particle clumping 
after deformation. A simple repulsive correction 
which loosely emulates the presence of virtual 
particles in the momentum equation has been 
derived. An empirical weighting function to 
extend the theoretical boundary correction to 
higher dimension cases has been presented. Results 
obtained by applying the boundary correction to 
two constant pressure test cases were presented. 
Th e method yields good correction of acceleration 
boundary defi ciency in regions of low curvature 

Conclusions
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but tends to slightly overcorrect at sharp corners 
and undercorrect near regions with high curvature.
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