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The Hybrid Cellular Automaton (HCA) algorithm is a methodology developed to simulate the process 
of functional adaptation in bones. The HCA algorithm combines elements of the cellular automaton 
(CA) paradigm with finite element analysis. This methodology has proved to be computationally efficient 
to solve topology optimization problems. In this paper, the HCA algorithm is integrated with a shape 
optimization algorithm that uses sequential quadratic programming. The geometry of the topologically 
optimized structure is converted into a two-dimensional solid model using an edge detection algorithm 
and parametric B-splines. An example problem of a Michell structure is presented. Also shown is the 
application of the shape optimization algorithm in the redesign of the lightening holes in the transverse 
floors of a riverine patrol vessel designed by COTECMAR. In both cases an appreciable weight reduction 
was obtained.

El método de los Autómatas Celulares Híbridos (HCA) para optimización topológica simula el proceso 
de adaptación funcional en estructuras óseas. El método HCA combina la técnica de los elementos finitos 
para análisis estructural con el paradigma de los Autómatas celulares (CA) para el diseño y ha demostrado 
ser una técnica efectiva para optimización topológica en estructuras continuas. En este trabajo se integra el 
método HCA con un algoritmo de optimización de forma que utiliza programación cuadrática secuencial. 
La geometría optimizada topológicamente es utilizada para construir un modelo bidimensional sólido 
aplicando un algoritmo de detección de bordes en imágenes y esplines paramétricos. Un ejemplo de una 
estructura Michell es presentado. También es presentada la aplicación de un algoritmo de optimización 
de forma en el diseño de unos aligeramientos en las varengas de un buque patrullero fluvial diseñado por 
COTECMAR. En ambos casos una apreciable reducción del peso fue obtenida.
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Optimization techniques applied to the structural 
design can provide the maximum benefit from 
the available resources. Adopting optimal design 
procedures converts the process of design into a 
sequence of rational decisions, while the indirect 
design is based in experience, creativity and 
random ideas of the design team. Two of the main 
fields of application for the structural optimization 
are the topology and the shape optimization 
techniques. Several works have been published, 
showing applications of these methods in different 
engineering fields [8, 13, 14, 18].

The goal of topology optimization is to find 
the optimal distribution of material in a finite 
volume. This maximizes a determined measure 
of mechanical performance under determined 
constraints [17]. The topology optimization 
algorithm selectively removes and relocates the 
material until optimal performance is reached [22]. 
However, this approach to structural optimization 
has some disadvantages. The resultant structure 
tends to present non-smooth edges, due to the 
design domain discretization [16]. Furthermore, it 
is common to find zones with relatively high stress 
in the resulting edges, with the potential to be 
improved [19].

In shape optimization the goal is to find the 
optimum profile for the structure components, 
while maximizing the performance under a given 
set of mechanical constraints [5]. This kind of 
optimization problems is very common in several 
fields of engineering; like electromagnetism, 
biomechanics, structural design and fluid-structure 
interaction applications [7, 11, 12]. There are 
different approaches to deal with a structural shape 
optimization problem. For the structural evaluation 
of the designs, the finite element and the boundary 
element methods are very popular. Nevertheless, 
there are proposals that intend to exceed the 
performance of these traditional methods [24]. The 
most employed approaches for the solution of the 
shape optimization problem are the basis vector 
and the shape perturbation methods [21].
This work intends to present a rational design 
methodology which integrates the Hybrid Cellular 

Automata method for topology optimization, 
(HCA) [20], with a shape optimization algorithm 
based on the shape perturbation approach, which 
applies the finite element method and uses 
Sequential Quadratic Programming (SQP) to solve 
the optimization problem.

To integrate effectively the topology and the shape 
optimization methods, an edge detection algorithm 
is used in conjuction with parametric B-splines 
modelling on the topologically optimized structure 
[3]. The resulting solid model is used as the initial 
design for the shape optimization algorithm.

The Hybrid Cellular Automaton (HCA) method is 
intended to solve complex structural optimization 
problems in engineering. The premise of the HCA 
method is that complex static and dynamic problems 
can be decomposed into a set of simple local 
rules that operate over a large number of cellular 
automata (CAs) that only know local conditions 
[22]. The cellular automaton neighborhood has 
no size or location restraints, except for its being 
defined in the same way for all of the CAs. This is 
an idealization of a physical system in which space 
and time are discrete. Therefore, the computation 
of the local evolutionary rules can benefit from 
parallel computing capacity [20].

In the HCA method, the design variables for the 
algorithm correspond to the relative densities of 
each automata. The elastic modulus of an element 
Ei is expressed as a function of the relative density 
xi as

where E0 and ρ0 are the elastic modulus and density 
of the solid material, respectively, ri is a variable 
density. The power p is used as a penalization for 
intermediate relative densities, accordingly, helping 
to make the resultant design a black and white 
structure.

Introduction

Topology optimization using the 
Hybrid Cellular Automaton method
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Along with the design variables, the state of each 
CA is determined by state variables yi. This variables 
are expressed as

where ui is the contribution of each element to the 
strain energy of the structure. The values of the state 
variables are determined using the Finite Element 
Method on each iteration of the algorithm.

The HCA algorithm solves a constrained 
optimization problem given by

where U(x) is the total strain energy, M(x) is the 
mass of the structure and ω is a weight coefficient. 
The first constraint specifies the available mass 
to be used in the design. The second and third 
constraints impose limits on the resulting 
structural displacements and stresses. Finally, the 
design variables fluctuate between the boundaries 
0 and 1. Actually, the lower limit is not 0 but a 
small positive value, to avoid the singularity in the 
stiffness matrix during the finite element analisys.

The HCA topology optimization algorithm, as 
shown in Fig. 1, can be described as follows. First, 
the design domain is defined, along with the 
physical properties of the material, load conditions 
and initial design. The analysis of stresses and 
displacements using the finite element method 
determines the values of the state variables. The 
value for the design variables is updated according 
to the local evolution rule x(t+1)=R(x(t),y(t)) . Then, 
the algorithm returns to the second step for the 
evaluation of the state variables. The convergence 
criterion is satisfied when there is no variation 
in the design variables, or when the maximum 
number of iterations is reached.

Shape optimization for structural design aims 
to find the optimal profile or boundaries of a 
structure that minimizes certain objective function 
under specified mechanical constraints. The basis 
vector method and the shape perturbation method 
are the most common approaches to solve shape 
optimization problems [21].

In the basis vector approach, the shape of the 
structure is described by a combination of different 
trial designs called ‘basis vectors’. The design 
variables are the weighting parameters that define 
the participation of each basis vector in the design 
process.

On the other hand, the shape perturbation approach 
requires the definition of perturbation vectors. These 
vectors deform the boundary of the initial design 
domain. The design variables are constituted by 
the components of the perturbation vectors, which 
determine the amount of perturbation during the 
optimization process [9]. 

This work makes use of the grid perturbation 
approach. Therefore, since this work focuses on two 

Shape optimization
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Fig. 1. HCA algorithm flow chart
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dimensional domains, the design variables vector 
is composed by two perturbation values associated 
with each node in the model [1].

The shape optimization problem with nonlinear 
constraints can be expressed as

where x is the design variables vector, dN is the 
vector with the magnitude of the displacement for 
each node, and σVM is the maximum value of von 
Mises stress in the model. To solve this optimization 
problem the sequential quadratic programming 
(SQP) approach is employed.

The horizontal and vertical coordinates that define 
the location of the ith node of the model, ui and vi 
respectively, are defined by

where u0i and v0i are the coordinates of the ith node 
on the initial design, and dui and dvi are, respectively, 
the horizontal and vertical perturbation on the 
same node. The design variables vector can be 
written as

where x2i-1=dui,  and x2i=dvi, for i=1,2,…, n; with 
n being equal to the number of non-restrained 
nodes in the model. It follows that during the 
construction of the design variables vector it is 
necessary to define an adequate objective for the 
final shape.

In order to obtain the desired complement 
between the topology optimization and the 
shape optimization algorithms, it is necessary an 

adequate definition of the objective for the last one. 
The shape optimization method developed for this 
work uses the weight of the structure as objective 
function. In the two-dimensional domain this 
function can be expressed as

where t is the thickness of the element and ρ is the 
material’s density.

The objective function requires the calculation 
of the area contained by each contour, then, the 
values for the interior loops are subtracted from the 
exterior contour. Thus, the objective function takes 
the form of

The displacement constraint is imposed in order to 
maintain the geometric validity of the model. This 
constraint can be expressed as

where

and ui and vi are, respectively, the horizontal and 
vertical coordinates of the ith node. The application 
of this constraint can significantly affect the 
performance of the optimization algorithm if 
a high number of nodes are used to describe the 
design boundaries.

In order to maintain the required consistency 
between the topology and the shape optimization 
method, a stress constraint is imposed. This 
guarantees that the design is stiff enough to 
endure the load. The failure criterion used in this 
case is von Mises, due to its conservative results 
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and simplicity of implementation. The von Mises 
criterion for ductile materials undergoing a general 
state of stress is defined as

This can be seen as the volume contained in a 
cylinder with radius  2/3σy with a symmetry axe 
forming equal angles with the principal stress axes. 
This expression, for materials under plane stress, is 
reduced to

which represents the area of a rotated ellipse Fig. 2. 
The evaluation of this constraint requires a finite 
element analysis of the plane stress model on each 
iteration. The maximum Von Mises stress found 
in the model is compared with the permissible 
stress established for the problem. The allowable 
stress can be the yield stress for the material or can 
include a design safety factor.

In order to achieve the integration of the topology 
(TO) and shape optimization (SO) algorithms, it is 
necessary to apply an intermediate processing. The 
idea is to convert the result of the TO into a valid 
model usable as the initial design for the SO [23].

The result of the execution of the topology 
optimization algorithm is a matrix with the values 

of the relative densities of the cellular automata. 
A grayscale image that describes the shape of the 
structure can be obtained by using the design 
variables results as intensity values. Ideally a 
black-and-white image will be obtained; however, 
it is common to obtain some automata with 
intermediate relative density values.

In this image, one pixel corresponds to one cellular 
automaton. In consequence, the resolution of the 
image depends on the number of automata selected 
for the topology optimization algorithm. Therefore, 
the smoothness of the contours varies according to 
the discretization of the design domain, as shown 
in Fig. 3.

An edge detection algorithm is applied to the 
image obtained using the topology optimization. 
The Canny method for edge detection, considered 
the optimal method for edge detection on digital 
images [6], is used.

The edge detection process reduces the information 
contained in the image, preserving the main struc-
tural properties [10]. The application of the Canny 
method to the image shown in Fig. 3a results in the 
image of the edges as seen in the Fig. 4.

The next step to obtain the initial design for the 
shape optimization algorithm is to create a b-spline 
model for each contour in the image. By means of 
this, the contours of the model are smoothed [3]. 
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Fig. 3. Topology optimization results for a design domain 
of (a) 44x22 and (b) 80x40 cellular automata

Fig. 4. Canny's edge detection results

Integration of topology and shape 
optimization
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At this point, the density of control points for the 
b-spline modeling is established . This parameter 
for the node density, KF, sets the percentage of 
points on the edge image preserved as a node for 
the b-splines, and is expressed as

where Nn is the number of nodes in the b-spline 
model and Pd is the quantity of black pixels in the 
image obtained with the edge detector.

Since every node has two perturbation values 
associated as design variables in the grid perturbation 
method used in the shape optimization algorithm, 
this parameter directly determines the number 
of design variables for the shape optimization 
problem. Moreover, the density of control points 
is important in the definition of the displacement 
constraints and, consequently, an inadequate value 
can affect the performance of the algorithm.

Once the contours are modeled as b-splines, a solid 
model is generated by the subtraction of the interior 
portions from the exterior part. At this point the 
geometric model of the initial design is complete. 
The remaining step is to translate the boundary 
conditions of the problem (loads and restraints) to 
the corresponding nodes in this geometric model.

To illustrate the performance of the integrated 
methodology, the design of a two-dimensional 
Michell-type structure is considered [15]. The 
design domain has an area of 800 ∙ 400 mm2 with 
a thickness of 20 mm. The displacement of the left 
lower corner is restrained in both directions and 
the displacement of the opposite lower corner is 
constrained in the vertical direction. The design 
domain is discretized into 80 ∙ 40 identical cellular 
automata. The properties of A-36 steel are used, 
and a vertical load of 5000 N is applied in the 
middle of the lower border, Fig. 5.

Defining the mass constraint limit to M/M0<0.40, 
the HCA algorithm converges in 24 iterations to 
the result displayed in the Fig. 6.

The application of the method to construct the 
shape optimization initial design, given the node 
density parameter a value of K=0.04, produces the 
model shown in Fig. 7. After the shape optimization 
process, a 4.47% reduction in weight is achieved. 
The algorithm converged, after 13 iterations, to the 
shapes presented in Fig. 8.

,
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Application example

Fig. 5. Design domain for a Michell-type structure

Fig. 6. Topology optimized structure with M/M0<0.4

Fig. 7. Initial design for the shape optimization process

Fig. 8. Optimized shape of the Michell-type structure

Initial boundaries Optimized boundaries
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As an application of the shape optimization 
algorithm developed for this work, the reshape 
of the transverse floors in the parallel body of 
the riverine patrol vessel (PAFL for its Spanish 
acronym), designed by COTECMAR, the Science 
and Technology Corporation for the Naval, 
Maritime and Riverine Industries, is considered 
(see Fig. 9). 

Initially, these elements were designed following 
the ABS Rules for building steel vessels for service 
on rivers [2]. As the operational profile of the ship 
requires a very low draft, the structural weight 

minimization is a primary objective for the next 
unit. The use of a documented direct calculus 
method, like the shape optimization presented 
here, enables the design to exceed the limits of the 
Classification Society rules.

The initial design for the shape optimization 
problem is extracted from the arrangement 
obtained applying the ABS Rules. The load 
condition includes the buoyancy pressure on the 
hull and, on the upper edge, the pressure from the 
maximum liquid column in case of damage to the 
compartment immediately above, as shown in the 
Fig. 10. The material used for the element is naval 
steel ASTM A131 [4].

Shape optimization of structural 
floors in the PAFL

Fig. 9. Riverine patrol vessel PAFL hull structure

Fig. 10. Free body diagram of the structural floor

Fig. 11. Initial design for the shape optimization of the lightening holes
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Fig. 11 shows the b-spline model of the initial 
design. Since the hull and inner bottom forms 
cannot be altered, the perturbation of the shape 
is only possible in the interior boundaries. The 
load condition is introduced as nodal loads in the 
bottom and tank top edges. The displacements 
for the extreme nodes in the inner bottom are 
restrained.

Table 1 shows the shape optimization problem 
parameters used for the reshape of the transverse 
floors.

The convergence criterion for this problem is 
satisfied when no change occurs in the objective 
function, which means that

After 24 iterations, convergence is obtained to an 
objective function value of 15947 mm2, equivalent 
to a 4.21 % reduction in weight of the structure. 
The objective function values and the final shape 
are shown in the Fig. 12.

Shape optimization parameters

Parameter Symbol Value

Number of nodes n 187

Design variables nv 164

Elasticity modulus E 210 GPa.

Poisson’s ratio n0 0,3

Table 1. Shape optimization parameters

Figure 12. Objective function vs. iteration number.
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This first attempt for the integration of the 
Hybrid Cellular Automata method with a shape 
optimization algorithm constitutes a tool for 
structural design with applications in several fields 
of engineering. The design tool is particularly 
useful in applications where the reduction of weight 
is an upmost objective. The addition of the shape 
optimization algorithm, in conjunction with the 
edge smoothing, improves the weight reduction.

The use of this methodology in early stages of the 
design process of river vessels, where reduced draft 
is of primary importance, enables an appreciable 
reduction in the weight in some of the main 
structural components. Current work focuses in 
the refinement of the shape optimization algorithm 
and the exploration of other types of approaches, 
like evolutionary methods. 

For each design case, the node density in the 
construction of the initial design for the shape 
optimization method must be selected with caution. 
The compromise between the desired level of detail 
and the computational cost must be considered 
and the sensibility of the results to the variation of 
this parameter is a subject of current analysis.

Further work will include the extension of the 
topology optimization to the design of plate 
structural members of ships, like the transverse 
floor shown in the example. This will include the 
constraints in the design domain that take account 
of the hull shape.
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