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Applications of Optimization in 
Early Stage Ship Design

Recent research at the University of Michigan developing and applying modern optimization methods 
to early ship design decision making is reviewed. These examples illustrate the use of fuzzy logic, genetic 
and evolutionary algorithms, and agent methods to solve complex multicriterion ship design problems. 
The first application optimizes an early stage hull form for both smooth water powering and seakeeping 
performance using an advanced evolutionary algorithm taking into consideration the change of vessel 
weight with the hull form variation. The second application supports the optimization of naval ship 
general arrangements using a new hybrid agent-genetic algorithm method and stochastic generation 
algorithm. The final example uses an evolutionary algorithm to establish the optimal commonality to 
use in two ship classes that are to share components and features in order to save overall fleet costs. These 
show how these advanced ship design methods can be used to aid early ship design decisions.

Se presenta una revisión de recientes investigaciones realizadas en la Universidad de Michigan que 
desarrollan y aplican métodos modernos de optimización en la toma de decisiones en las primeras etapas 
del diseño de embarcaciones. Problemas complejos de optimización multicriterio en el diseño de buques 
son resueltos utilizando lógica difusa, algoritmos evolutivos y métodos de agentes. En la primera aplicación 
se optimiza la forma del casco en una etapa preliminar para optimizar tanto la potencia requerida en aguas 
tranquilas como el comportamiento en el mar usando un algoritmo evolutivo que considera el cambio 
en el peso del buque ocasionado por la variación en la forma del casco. La segunda aplicación utiliza 
un método híbrido agentes-genético y generación estocástica para soportar la optimización del arreglo 
general de unidades navales. Por último se utiliza un algoritmo evolutivo para optimizar la concordancia 
de componentes usados en dos clases de buques con el fin de reducir el costo global de la flota. Estos 
ejemplos muestran la ayuda que proporciona la utilización de métodos avanzados de diseño en la toma de 
decisiones durante las primeras etapas del diseño de buques.

Key words: Ship design, multicriterion optimization, genetic algorithms, evolutionary algorithms, agent 
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Ship design involves the careful balancing and 
optimization of many complex, interacting issues.  
Formal numerical optimization methods were long 
unable to deliver on their promise, however, because 
of their limited capability to handle problems 
complex enough to really address the important 
design issues in naval ship design. This situation 
has changed in recent years with the evolution of 
computer power, the development of increasingly 
complex analysis and synthesis capabilities, and 
the development of new methods to treat complex, 
multicriterion optimization problems. Many of 
these methods evolved in the broad area of artificial 
intelligence and soft computing over the past three 
decades. The author has worked in this area for 
more than 20 years and taught this material in 
the graduate-level design class NA570 Advanced 
Marine Design at the University of Michigan 
from its introduction in 1997 until his retirement 
from the University in May 2008. Three areas of 
research using these methods are described here 
to illustrate some the capabilities and potential of 
these methods to address important ship design 
issues.

Most ship design problems involve multiple 
conflicting criteria for selecting the best design, 
such as the inevitable tradeoff between performance 
and cost. Marine design requires the careful 
consideration of these competing criteria and 
experienced marine designers must make difficult 
design tradeoff decisions.  Traditional numerical 
optimization methods were first developed for 
use with a single optimization criterion, objective 
function, measures of merit, or cost function.  
These early numerical optimization methods had 
some success in detailed design decisions, but they 
were significantly less effective in solving higher-
level conceptual and preliminary design problems 
involving multiple conflicting criteria.  And this 
is precisely the area were the greatest gains can be 
achieved by formal optimization.
	
The multicriterion optimization problem involves 
K ≥ 1 criteria and can be formulated in the form:

subject to the equality and inequality constraints

where the K multiple optimization criteria f1(x) 
through fK(x) are each dependent upon the N 
unknown design parameters in the vector x.  In 
general, this problem has no single solution due 
to the conflicts that typically exist among the K 
optimization criteria.
	
The traditional approach to solving this type of 
problem with early numerical methods that could 
handle only one criterion was to use a weighted-sum 
cost function to convert the vector F into a related 
scalar cost function F.  There are also a number 
of scalar compromise solution definitions, such as 
the min-max and nearest to the utopian solutions, 
which can be used if a particular definition 
reasonably reflects a design team’s intent.  These 
methods were reviewed and compared in Parsons 
and Scott (2004).
	
When conflicting multiple criteria are present, the 
most common definition of an optimum is Pareto 
optimality, which was first articulated by the 
Italian-French economist V. Pareto (Pareto 1906).  
This is also referred to today as Edgeworth-Pareto 
optimality (Statnikov 1999) and can be expressed 
as,
A design is Pareto optimal if it satisfies the constraints 
and is such that no criterion can be further improved 
without causing at least one of the other criteria to 
decline.
Note that this recognizes the conflicting or 
competitive interaction among the criteria.  If there 
are conflicting criteria, Pareto optimality results in 
a set of solutions that are all considered equally 
good under this definition. Some additional 
consideration must be used to select the resulting 
single design to use.  Compromise solutions, e.g. 
the min-max solution noted above, might be used 
to help in the selection of one particular design 
solution to use.  The Pareto set or Pareto front that 
results from the minimization of two criteria f1(x) 

Introduction

Multicriterion Design Optimization

					         (1)
min F(x) = [f1(x), f2(x), f3(x), … , fK(x)] ,      

x = [x1, x2, …, xN]T

					         (2)                                                                          
					         (3)                                                                          

hi(x) = 0,       	 i = 1, …, I

gj(x) ≥ 0,	                   j = 1, …, J
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and f2(x) is illustrated schematically in Fig. 1.  This 
shows the two criteria normalized by the best or 
minimum value achieved for that criterion. The 
Pareto front extends between the solution that 
yields the best for criterion one, f1o, to the solution 
that yields the best for criterion 2, f2o. It may 
contain gaps if the feasible region is not convex. 
The min-max compromise solution is one on the 
45o line in this normalized presentation. Designers 
often focus on the “knees” of the front where 
there is a sharp change of slope. These solutions 
are considered more efficient since the loss of one 
criterion begins to increase more rapidly with each 
improvement in the other.

Most recent applications of multicriterion design 
optimization have utilized genetic algorithms (GA's) 
to find the scalar solution or generate the Pareto 
front. GA’s have evolved out of John Holland's 
pioneering work (Holland, 1975) and Goldberg’s 
engineering dissertation at the University of 
Michigan (Goldberg, 1983). These optimization 
algorithms typically include operations modeled 
after the natural biological processes of natural 
selection or survival, reproduction, and mutation. 
They are probabilistic and have the major advantage 
that they can have a very high probability of 
locating the global optimum and not just one of 
the local optima if they are present in a particular 
problem.  

GA’s can readily treat a mixture of integer, 
discrete, and real variables in x. The unknown 
vector x is typically coded as a binary string called 
a chromosome. These algorithms are also called 
evolutionary algorithms when the unknowns are 
coded as real rather than binary variables. GA's 
operate on a population of potential solutions at each 
iteration or generation rather than evolve a single 
solution, as do most conventional optimization 
methods. Constraints can be handled through 
a penalty function or applied directly within 
the genetic operations. These genetic algorithms 
require significant computation, but this is much 
less important today with the dramatic advances 
in computing power.  Accessible general references 
on GA’s are by Goldberg (1989), Coley (1999), 
and Gen and Chang (2000). Independent variable 
coding is well treated by Michalewicz (1996).  
	
In GA’s, an initial population of solutions or 
individuals (chromosomes) is randomly generated 
in accordance with the underlying constraints 
and then each individual is evaluated for its 
fitness for survival.  The definition of the fitness 
function is for maximization, but can achieve 
either minimization or maximization through the 
formulation.  The genetic operators work on the 
chromosomes within a generation to create the 
next, usually improved generation with a higher 
average fitness.  Individuals with higher fitness 
for survival in one generation are more likely to 
survive and breed with each other to produce 
offspring with even better characteristics, whereas 
less fit individuals will eventually die out.  After 
a large number of generations, a globally optimal 
(or near-optimal) solution or the Pareto front can 
generally be reached.
	
Three genetic operators are utilized in a simplest 
genetic algorithm. These are selection, crossover, and 
mutation operators (Goldberg, 1989, Li and Parsons, 
2001). The selection operator selects individuals 
from one generation to form the core of the next 
generation according to a set random selection 
scheme.  Although random, the selection is biased 
toward better-fitted individuals so that they are 
more likely to be copied into the next generation. 
The crossover operator combines two randomly 
selected parent chromosomes to create two new 
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Fig.1. Pareto Front Extending between Solutions f1o and f2o
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offspring by interchanging or combining gene 
segments from the parents. The mutation operator 
provides a means to alter a randomly selected 
gene(s) of a randomly selected single chromosome 
to introduce new variability into the population. 
Crossover and mutation provide the random search 
capability to locate the region of the global solution. 
Many algorithms include an elitism mechanism to 
ensure that the current best solution(s) is not lost 
through the genetic manipulations. 

GA’s and evolutionary algorithms have been 
adapted to multicriterion optimization where they 
are particularly attractive because they can generate 
the whole Pareto front in one optimization run.  
The algorithms are especially adapted to generate 
a population of solutions along the Pareto front 
by dominance sorting of the population at each 
generation to retain those that satisfy the Pareto 
optimum definition. Evolutionary algorithms for 
solving multicriterion optimization are well treated 
by Deb (2001), Osyczka (2002), and Zitzler et al. 
(2003).

Many important engineering design problems 
involve issues that are subjective, vague, or 
ambiguous. Fuzzy set theory provides a way to 
deal with these issues. Fuzzy set theory, started by 
Zadeh (1965), introduced the concept that rather 
than requiring that something had to be a member 
of a set (1) or not (0), the traditional crisp sets, it 
could have a varying degree of membership µ(x) 
between zero and one.  This allows subjective, vague 
and ambiguous things to be modeled rigorously for 
treatment in control systems, optimization, etc. By 

using fuzzy sets computations can be performed 
in linguistic terms (using set names) that mimic 
complex human reasoning. Good introductions to 
fuzzy sets and systems are provided in Zimmerman 
(1991), Kosko (1992), and Mendel (2001). Li and 
Parsons (1998) used fuzzy decision models to 
model the aggregate behavior of the world shipping 
community in buying, selling secondhand, and 
scrapping tankers (1998).  

A helpful example is the concept of a person being 
tall. This is a subjective thing that depends upon 
the context – is it a basketball or horse racing jockey 
locker room? In traditional (crisp) set theory, a 
person would have to be either a “tall person” or a 
“not tall person.” A person of normal height under 
normal situations might make this transition at 
5’10” (1.78 m).  The crisp set membership functions 
or truth value µ(height) for this are shown as the 
solid lines in Fig. 2. The membership must be 
either zero or one. Using fuzzy sets, one could more 
realistically say that a person is definitely a “not tall 
person” if they are 5’6” (1.68 m) or less and that 
they are definitely a “tall person” if they are 6’2” 
(1.88 m) or taller. Between these two heights there 
is a gradual, fuzzy transition from being not tall to 
being tall. The fuzzy set membership functions µ 
for this are shown as the dashed lines in Fig. 2.

In fuzzy optimization, fuzzy membership 
functions or fuzzy utilities 0 ≤ U(x) ≤ 1 are defined 
for each criterion or constraint. They represent the 
degree to which some requirement is satisfied. The 
independent variable x is selected to appropriately 
reflect each issue. A typical fuzzy utility, as might 
be used to express a requirement for ship speed to 
accomplish a particular mission, is shown in Fig. 
3. The region with U(x) = 0 is clearly unacceptable 

Fuzzy Sets, Fuzzy Logic, and 
Fuzzy Systems
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to the designer and region with U(x) = 1 is fully 
acceptable. The fuzzy region between the minimum 
acceptable threshold x


 and the design goal or target 

xu is a subjective, fuzzy quantity between 0 and 1.  
This is similar to the approach used by Brown and 
Salcedo (2003) to define naval design Measures of 
Performance (MOPs) for their use in performance 
and cost multicriterion optimization for a DDG.  
The fuzzy transition could be developed by design 
judgment or from expert opinion by using the 
Analytical Hierarchy Process (Saaty, 1996).

If each design goal and constraint is expressed by 
an appropriate utility function Ui(x) that depends 
on the design choices x, a fuzzy optimum using 
minimum correlation inference (Kosko, 1992), 
for example, is given by the maximization of the 
optimization criterion (cost function) or total 
utility U(Ui(x)),

This seeks the design x that maximizes the worst 
(minimum) satisfaction of any of the applicable 
goals and constraints i. This approach yields 
a multicriterion compromise among all of the 
conflicting goals and constraints and treats them 
all in a similar manner. It has the search advantage 
that there can always be a “feasible” solution that 
can be improved.

The naval combatant hull form that minimizes 
smooth water powering will generally not provide 
the best seakeeping performance. This design 

tradeoff was a major focus of the U.S. Navy DDG51 
design process (Keane and Sandberg, 1984).  The 
goal of the first research to be reviewed here (Zalek 
et al., 2006a; Zalek et al., 2006b; Zalek, 2007; 
Zalek et al., 2009) was to develop a multicriterion 
design optimization scheme that would take the 
ship design description and hull offsets produced by 
the U.S. Navy’s Advanced Surface Ship Evaluation 
Tool synthesis model (ASSET, 2005) and optimize 
the hull form for smooth water powering and 
seakeeping performance. To maintain the validity 
of the parent ship analysis performed by ASSET, 
the search for the hull form parameters and 
variables was allowed to vary roughly ±15% from 
the parent design. This limitation was imposed to 
provide assurance that the final hull would still 
meet the mission effectiveness provided by ASSET, 
which considers much more detail about the overall 
design.  

The example shown here will be the optimization 
of a frigate parent produced by ASSET. The 
parent hull parameters and the range of variation 
of the parameters permitted in the optimization 
are shown in Table 1. The depth D is fixed by 
the accumulation of deck heights and the blade 
number Npdld is fixed by typical practice.

fully acceptable

unacceptable x
threshold

xugoal

U(x)

x

1

0



Fig. 3. A Typical Fuzzy Utility U(x)

Table 1.  Parent Frigate and Solution Variable 
Search Space (Zalek, 2007)					         (4)

U* = max U(Ui (x)) = max [min (Ui (x))]
x x i

Optimal Hull Forms for Powering 
and Seakeeping

The Design Problem

Variable Parent χ0 S

LBP (m) 124,36 105,71       143,02

B (m) 13,80 11,73        15,87

T (m) 4,79 4,06        5,50

D (m) 9,14 9,14

CX 0,764 0,703        0,825

CP 0,610 0,579        0,640

CWP 0,741 0,704        0,778

LCB (%) -0,304 -0,804        0,196

LCF (%) -2,076 -2,576        -1,576

Dp (m) 5,029 4,023        6,035

Ae / Ao 0,739 0,682        0,850

Npbld 5 5

EngMn GE LM2500-21 GE LM2500-20,-21

Applications of Optimization in Early Stage Ship Design
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The performance criteria were the minimization of 
required power for smooth water operations and 
the minimization of the probability of the vessel’s 
failure to complete its missions due to overall 
seakeeping performance. The power minimization 
criterion was as follows:

where the weights wi sum to one. This combines 
the brake power required for the endurance speed 
PB Ereq, the brake power required for sustained sea 
speed PB Sreq, and the maximum vessel speed Vmax. 
Each is normalized by its value for the parent 
hull, xo. The inversion of the final term changes 
maxVmax to the equivalent min(1/Vmax).

The seakeeping criterion was expressed as an 
inoperability index to be minimized,

where OISK, between 0 and 1, is the U.S. Navy’s 
seakeeping operability index as presented by Keane 
and Sandberg (1984):

This operability index calculates the Expected 
Value (probability) of the vessel being able to 
complete its missions m as determined by the 
associated seakeeping limits σlimit at locations (X, 
Y, Z) on the ship for the various headings βj, speeds 
Vk, Sea States S(ω)ℓ that will be encountered. The 
summation Σ is a discrete integration overall all 
missions m, headings j, speeds k, and Sea States 
ℓ. The function f is either 0 or 1 for each jkℓm 
depending upon whether on not the ship can satisfy 
all the limits σlimit in mission m at their associated 
location (X, Y, Z) in the seakeeping analysis for 
condition jkℓ.  P is the probability of occurrence 
of the given heading, speed, Sea State, and mission 
in jkℓm. 

For the example below, the speed profile Vk was 
adapted from data for DDG51 as shown in Table 

2.  The probability of occurrence of the Sea States 
S(ω)ℓ were for year-round conditions in the North 
Atlantic as shown in Table 3. The three missions 
(activities) m and their associated seakeeping limits 
and locations were as shown in Table 4.  All heading 
angles relative to the waves βj were considered 
equally likely.

The power required was calculated using an 
adaptation of the model of Holtrop and Mennen 
(1982) and Holtrop (1984) using the wetted surface 
calculated from the vessel offsets. The propeller 
design was optimized in an inner loop calculation 
using an adaptation of the Wageningen B-Screw 
Series Propeller Optimization Program (POP) 
presented in Parsons et al. (1998). The seakeeping 
performance was calculated using an adaptation of 
the linear, frequency-domain, slender-body strip 
theory code SHIPMO.BM developed by Beck and 
Troesch (1989). Viscous roll damping based upon 
Himeno (1981) is added within SHIPMO.BM.

The ship design modeling included constraints to 
keep the independent variables within a reasonable 
distance of the parent hull initial values xo as 
shown in Table 1 to ensure that the more complete 
analyses of ASSET would still be reasonably valid 

The Design Modeling

					         (5)
FPWR(x) = w1PB Ereq(x)/PB Ereq(xo) + w2PB Sreq(x)/PB Sreq(xo) 

+ w3Vmax(xo)/Vmax(x)

					         (6)FSK(x) = 1 – OISK(x)

					         (7)
OISK(x) = Σ f{σjk(x) ≤ σlimit}m 

• P[βj, Vk, S(ω)

, {(X, Y, Z), σlimit}m]

jkm

Speed (knots) % Duration

7 28

10 15

15 24

18 20

20 10

28 3

Sea State HS (m) T1 (s) % Duration

2 0,30 3,4 8

3 0,88 4,0 24

4 1,88 5,3 28

5 3,25 6,4 21

6 5,00 7,6 13

7 7,50 9,0 6

Table 2. Speed Profile adapted from DDG51 (Zalek, 2007)

Table 3. Sea State Parameters and Profile (Zalek, 2007)
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for the resulting optimized hull design.  In practice, 
ASSET would also be rerun for the optimized hull 
design to ensure that the overall design was viable.   
One unique aspect of this work was the use of the 
full 346 three-digit weight group models from 
ASSET within the optimization so that the vessel 
would always have realistic weight estimates as 
the hull form changes and satisfies weight-equals-
displacement. Prior hull form optimization has 
typically assumed constant displacement so that 
this major complexity could be avoided. Zalek 
shows that this is a poor assumption that will yield 
results far from the Pareto front (Zalek, 2007).  
The weight was made equal to displacement within 
0.05% by establishing either draft T or midship 
coefficient Cx internally as a dependent variable. 

The longitudinal center of gravity LCG and 
longitudinal center of buoyancy LCB were assumed 
to have enough later design flexibility to provide 
the desired even keel trim.

Inequality constraints, some mandatory and 
others optional, were included to ensure the 
minimum required GMT, minimum required 
deck area, minimum required machinery space 
length and depth, minimum deck height, propeller 
characteristic and cavitation limits, maximum 

required sustained speed power, and maximum 
required throttle setting.

The hull form changes required to yield the design 
parameters were made systematically to ensure that 
the resulting hull was always a fair and reasonable 
hull. The method developed by Zalek modifies 
the offsets in four phases to (1) match the length 
on the waterline, beam, and draft; (2) match the 
hull prismatic coefficient and longitudinal center 
of buoyancy; (3) match the waterplane coefficient 
and longitudinal center of flotation; and then (4) 
modify each station’s offsets to match the area 
and constraints derived from the first three phases 
(Zalek et al., 2008). 

Zalek (2007) used a nontraditional multicriterion 
formulation that contains five criteria,

where D(x) is a diversity operator that attempts for 
force the solutions to spread out along the Pareto 
front for good definition, H(x) is a penalty term to 
force weight to equal displacement, and G(x) is a 
penalty term to force satisfaction of the inequality 
constraints (Zalek, 2007; Zalek et al., 2009). The 
diversity operator forces each group of three nearest 
neighbor solutions along the Pareto front to be as 
far apart as possible.

The solution was obtained using a multicriterion 
evolutionary algorithm developed by Zalek (Zalek, 
2007; Zalek et al., 2009).  At each generation, the 
initial population of solutions and those developed 
by the genetic operators were subject to a non-
dominance sorting in accordance with the Pareto 
optimality definition. The initial population 
was generated at random. The highest ranked 
solutions were placed in an archive that serves as 
the elitism mechanism. These were then subjected 
to tournament selection to produce parents for 
arithmetic crossover. These offspring were then 
added to the archive with others produced by 
mutation and the process was repeated to select the 
new non-dominated solutions that approximate 
the Pareto front. 

The Optimization Methodology

Table 4. Missions and Associated Seakeeping 
Performance Limits (Zalek, 2007)

Activity
(Weight) Motion Limit

(RMS) Location

Transit
(50%)

Pitch, η5 1,50º -

Roll, η4 4,00º -

Vertical Accel 0,20g Bridge

Lateral Accel 0,10g Bridge

Helo Ops
(30%)

Pitch, η5 0,75º -

Roll, η4 2,00º -

Vertical Accel 0,20g Flight Deck

Lateral Accel 0,10g Flight Deck

Vertical Veloc 1.00 m/s Helo Pad

Cognitive
(20%)

Roll, η4 3,00º -

Vertical Accel 0,10g Bridge

Lateral Accel 0,05 Bridge

					         (8)min F(x) = min {FPWR(x), FSK(x), D(x), H(x), G(x)}
x x

Applications of Optimization in Early Stage Ship Design
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Figure 4 shows the results from a typical 
optimization run starting with the triangle 
solutions in the first generation and proceeding to 
the diamond solutions after 120 generations, which 
provide a good numerical approximation to the 
Pareto front.  The results are shown in the primary 
criterion space FPWR and FSK. The solution at the 
upper left provides the lowest power requirement 
and the solution at the lower right provides the best 
seakeeping performance.

The resulting Pareto Front designs for the optimized 
ASSET produced frigate hull form are shown in the 
normalized optimization criterion space in Figure 
5. The power weights (w1, w2, w3) were (0.4, 0.4, 
0.2), the endurance speed was 20 knots, and the 
sustained speed was 28 knots. The best powering 
design and the best seakeeping design are shown.   
The min-max compromise design is also shown.  
In this case, this also happens to be the nearest 
design to the utopian point (FPWR min, FSK min), 
which cannot be achieved due to the inequality 
constraints. Note that the diversity operator has 
produced a good definition to the entire Pareto 
front by ensuring that all non-dominated designs 
are spread out along the front.  

The characteristics of the parent design produced by 
ASSET and the best smooth water powering, best 
seakeeping, and min-max compromise optimized 
designs are shown in Table 5. The best powering 
design is relatively short, narrow, and deep in the 
water. The best seakeeping design is almost 23 m 
longer, wider, and almost 1 m shallower. Both 
designs use the same GE LM2500-21 engine. 
As expected the min-max compromise design 
is intermediate between these two designs. Note 
that it achieves excellent FPWR powering and FSK 
seakeeping performance, each within about 3.4% 
of the best possible. The body plans of the resulting 
hull forms for these designs are shown in Zalek et 
al. (2009). 

The creation of effective general arrangements in 
naval vessels is a difficult design task requiring 
considerable time and the consideration of many 
potentially conflicting design goals, requirements, 
and constraints. The overall goal of the second 
research to be reviewed here (Daniels and Parsons, 
2006; Nick et al., 2006; Nick and Parsons, 2007; 
Daniels and Parsons, 2007; Nick, 2008; Daniels 
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and Parsons, 2008; Parsons et al., 2009) was to 
provide an optimization technology and design 
tool to assist the arrangements designer to create 
effective naval surface ship arrangements with 
the maximum amount of intelligent decision 
making support. The software system will assist 
the designer in developing rationally-based 
arrangements that satisfy design specific needs as 
well as general Navy requirements and standard 
practices to the maximum extent practicable. This 
system will be used following or as a latter part of 
U.S. Navy’s ASSET (2005) synthesis process. It is 
compatible with the U.S. Navy’s product modeling 
and database system LEAPS (2006).

The arrangement process is approached as two 
essentially two-dimensional tasks as shown 
schematically in Fig. 6.  First, the spaces are allocated 
to Zone-decks, one deck in one vertical zone, on 
the ship’s inboard profile using fuzzy optimization.  
Then the assigned spaces are arranged in detail on 

the deck plan of each Zone-deck in succession.   
The arrangement phase is divided into two coupled 
parts: the fuzzy optimization of the topology 
(relative location) of the spaces within the Zone-
deck where each topology uses the best of multiple 
detailed geometries generated by a stochastic 
generation algorithm. Consideration is given to 
the desired overall location, adjacency, separation, 
access, area requirements, area utilization, and 
effective compartment shape. The modeling can 
produce rectangular, C, T, L, and Z-shaped spaces 
as needed to fit around each other, stair towers, 
vent trunks, weapons modules, etc.

The allocation modeling used a real integer 
independent variable vector, chromosome, that 
indicates the Zone-deck k to which each space i is 
allocated,

This ensures that each space is assigned to one and 
only one Zone-deck without additional constraints.  
The search space is very large. A corvette-sized 
vessel with I = 89 assignable spaces and K = 29 
Zone-decks will have a theoretical search space 
(possible x solutions) of KI = 1.4 x 10130.  At this 
strategic design stage, the efficient utilization of 
available arrangeable space in the Zone-decks 
and the desired global location, adjacency and 
separation of the spaces are considered.   The fuzzy 
optimization criterion used was follows:

Value Parent 
χ0

Best 
FPW R

NtU / 
Min-Max Best FSK

FPW R 0,6776 0,5608 0,5803 0,5964

FSK 0,4182 0,4329 0,3531 0,3416

LBP (m) 124,36 119,41 141,90 142,34

B (m) 13,80 12,54 12,94 13,40

T (m) 4,79 5,08 4,36 4,12

D (m) 9,14 9,14 9,14 9,14

CX 0,7640 0,7190 0,7846 0,8192

CP 0,6100 0,5792 0,5815 0,5835

CWP 0,7410 0,7393 0,7467 0,7496

LCB (%) -0,304 -0,630 -0,551 -0,622

LCF (%) -2,076 -1,800 -1,707 -1,679

Dp (m) 5,029 6,001 5,924 5,781

Ae / Ao 0,7390 0,7536 0,7713 0,7716

Npbld 5 5 5 5

EngMn *-21 *-21 *-21 *-21

Table 5. Comparison of Parent and Noteworthy Designs 
(Zalek, 2007)

Fig. 6. Structure of General Arrangement Optimization 
(Parsons et al., 2009)

*Note: GE LM2500

The Design Modeling

Part 1 Part 2: Arrangement

Allocation Topology

Solution

Geometry

U*(x)

					         (9)x = [x1, x2, …, xI]
T,       1 ≤ xi ≤ K

					         (10)

max U(x) = min(Uk) •  ΣUk/K

 
• Σ[(wi/Σwi)min(Ui1, Ui2, …, UiNi)] ≤ 1

x k

i i

k
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The first term uses minimum correlation inference 
and seeks to raise the worst of the area utilization 
fuzzy utilities for the Zone-decks as shown in 
Fig. 7 where the design seeks a utilization UUk 
= allocated area/available area  of 95% of the 
available area.  This model uses the formula for 
the Normal distribution for the each half of the 
continuous utility and the designer can control σℓ 
and σu.  The second term seeks to raise the average 
area utilization utility for all Zone-decks. The third 
term seeks to raise the weighted average of the 
least satisfied of the Ni global location goals and 
adjacency and separation constraints for each space 
i. Weights are used so that a Combat Information 
Center (CIC), for example, can have greater priority 
than a storeroom.  Since this optimization involves 
assignment to discrete Zone-decks, the UiNi fuzzy 
utilities are discrete values,  between 0 and 1, that 
depend upon the current Zone-deck of space i and 
the Zone-deck of the space j to which adjacency 
and separation constraints are given.

The geometry modeling involves the use of the 
three-box model in which each space has a centroid 
rectangle and can then grow up to two appendage 
rectangles to create L, T, C, or Z shapes as needed. 
The initial development was on a 1 m x 1 m grid 
system. An example topology chromosome for a 
Damage Control Deck Zone-deck to which spaces 
1 through 14 have been allocated could appear as 
follows:

where PP and SP indicate the prearranged location 
of the main fore and aft port and starboard 
passageways, respectively, and CP indicates the 
location of an arrangeable cross passage. This 
topology indicates that spaces 1, 3, 2 are arranged 
from fore to aft in the area outboard of the port 
passageway to which they were allocated. The 
best geometry generated by the stochastic growth 
algorithm for this topology chromosome is shown 
in Fig. 8 where the ST indicate stair towers and 
there is a fixed object trunk on the port side.  
Space 7 can be seen to use all three of its possible 
rectangles in order to fit around the stair tower and 
space 10.

The topology fuzzy optimization used the 
criterion,

where the Uicj are the Ni constraint utilities for space 
i. The fuzzy utilities Uicj are for the required area, 
minimum overall dimension, minimum segment 
width, aspect ratio, perimeter, adjacencies and 
separations, and if two accesses are required to the 
space, the access separation. One or two accesses 
can be specified to either main passage or left free.    

The stochastic growth algorithm (Nick, 2008) 
starts with the space “centroid” locations indicated 

Zone-deck Area Utilization Uuk
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Fig. 7. Fuzzy Zone-deck Area Utilization Utility 
(Parsons et al., 2009)

Fig. 8. Best Geometry (U* = 0.8165) for 
Chromosome Equation (11) (Nick, 2008)

					         (11)xt = [1, 3, 2, PP, 8, 9, 4, CP, 7, 10, 5, 6, SP, 13, 14 12 11]
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by the chromosome and then generates the spaces 
by a random process of expanding and shrinking 
the spaces until the total space is filled.  The space, 
direction of change, and amount of growth (±) are 
determined randomly with controlled probabilities.  
Moves are accepted if there is room for the change.  
Spaces can push a stair tower if there is room.  Above 
and below the Damage Control Deck, the stair 
towers become fixed objects.  Multiple geometries 
are generated for each topology chromosome and 
then the one giving the best utility, equation (12), 
is used in the optimization.

Daniels (Daniels and Parsons, 2008) developed a 
new hybrid agent-Genetic Algorithm optimization 
method for the allocation optimization. Agents 
are computer objects that are given a predefined 
behavior and are then allowed to operate to evolve 
a solution to complex problems. The allocation 
criterion, equation (10) has portions related to 
good design from the viewpoint of each Zone-
decks, Uk, and portions related to good design 
from the viewpoint of each space, min(Ui1, Ui2, 
…, UiNi). This is amenable to an agent approach 
if there is an agent representing the in interests of 
each Zone-deck k and an agent representing the 
interests of each space i. The overall schematic is 
shown in Fig. 9.

The agent approach uses K Zone-deck Design 
Agents that sequentially propose a prioritized list 
of changes to a randomly selected candidate design 

that will improve its own area utilization utility 
Uk. The Zone-deck agents can propose to add a 
space, divest itself of a space, or swap spaces with 
another Zone-deck. These proposals are evaluated 
by a Design Review agent and the first, if any, 
that improves the overall arrangement design as 
expressed in equation (10) is accepted.  The Design 
Agents work on a small population of candidate 
designs. 

The agent approach also uses I space Design 
Agents that simultaneously and sequentially 
propose changes to randomly selected candidate 
designs that will improve their own part of the 
cost function; i.e., min(Ui1, Ui2, … UiNi). The space 
agents can propose to move to a new Zone-deck 
or swap places with a space in another Zone-deck.   
These proposals are evaluated by the Design Review 
agent and the first, if any, that improves the overall 
arrangement design as expressed in equation (10) 
is accepted. 

In the agent-based approach, the agents can only 
improve what is already present in the current 
small population of candidate designs, which is 
initialized using a random assignment algorithm.  
Some form of global or divergent search is also 
needed for maximum performance. Combining 
the agents with a Genetic Algorithm Agent using 
mutation, crossover, and two space swap elements 
for a divergent search capability yielded solutions 
with superior overall utility (Daniels and Parsons, 
2006; Daniels and Parsons, 2007). A population of 
10 candidate designs was used. The hybrid agent-

Fig. 9. Overall Schematic for Hybrid Agent-Genetic Algorithm Optimization (Daniels et al., 2006)

The Optimization Methodology

Simulation Master

Domain Agent Review Panel

Domain Agent 1

Generic
Algorithm

Agent

Design
Judge
Agent

Domain Agent 2 Domain Agent K

Domain Agent Collection

Ship Population: 1...Npop Ships

Domain Agent 1 Domain Agent 2 Domain Agent K
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GA solutions were superior to those obtained by 
either a pure GA or pure agent solution and were 
also significantly faster than obtained with a 
complex GA. 
  
The topology optimization was performed with 
a conventional Genetic Algorithm using roulette 
selection, crossover, and two space swapping 
(Nick and Parsons, 2007). Using a population 
of four topology chromosomes and generating 
four stochastically-generated geometries for each 
topology, the GA operating for 25 generations 
produced an 8% improvement (Figure 8) over the 
best of the initial random topologies. 

The example vessel presented here is an artificial 
demonstration design designated the Habitability 
Ship.  It has its origins in a non-U.S. Navy 3150 
tonne, 109 m Notional Corvette design. This was 
a two-gender design using an Officer, PO, and 
Specialist (enlisted) nomenclature. Because there is 
publication sensitivity associated with this design 
and with the default constraints associated with 
the combat related spaces, the ship was reduced 
for demonstration purposes to just contain the 
propulsion and habitability aspects of the original 
design.  All combat spaces, one superstructure deck, 
and six vertical WT zones were eliminated from 
the vessel and the hull form was scaled to enclose 
this reduced size. One engine room was eliminated.  
The net result is a vessel with an abnormally large 
fraction devoted to habitability spaces.

The Habitability Ship is shown schematically in Fig. 
10.  There are Port (P), Center (C), and Starboard (S) 
Sub-Zone-decks created by the main passageways 
on the after part of the Damage Control Deck.  
The design consists of 103 spaces, 14 of which were 

fixed including the bridge, bridge-related electrical 
equipment rooms (2), steering gear (2), anchoring 
and mooring, mooring area and gear storerooms 
(3), enclosed Rigid Inflatable Boat (RIB) stowage 
area, boat gear locker, main machinery room (2 
levels) and auxiliary machinery room. This leaves 
89 spaces to be allocated to 29 Zone-decks and 
Sub-Zone-decks. There were a total of 1307 goals 
and constraints.

The allocation for the Habitability Ship was 
optimized using a population of 10 candidate 
allocations for 1500 generations.  A generation here 
is one round of GA operations and one cycle of space 
and Zone-deck agent proposals that can produce up 
to 5 changes each. The best solution was reached in 
181 generations.   This required about 20 minutes 
on a 2 GHz Intel Pentium Mobile PC with 1 GB 
RAM. No further improvement was found out to 
1500 generations.  In general, the arrangement is 
very good with a total Utility of U = 0.778.   This 
is composed of the three component terms in 
equation (10) with a minimum Zone-deck area 
utilization utility U1 = 0.987, average Zone-deck 
area utilization utility U2 = 0.999, and weighted 
average minimum space utility U3 = 0.790.  The 
U3 value characterizes the amount of compromise 
necessary for a solution.  The resulting allocation of 
spaces is shown schematically in Figure 11 (Parsons 
et al., 2009).

In the automotive and consumer products 
industries (powered hand tools, etc.), there is a 
strong interest in using common base platforms 

Sample Allocation Results

Ship Population: 1...Npop Ships

P  C  S
0,05 0,05

0,050,05
0,05 0,05

0,50 0,50 0,50 0,50 0,50 0,50

0,50 0,50 0,50 0,50 0,50

0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05

0,05 0,05 0,05 0,05

0,05
0,05

Fig. 10.  Habitability Ship Schematic Inboard Profile (Parsons et al., 2009)

Optimal Commonality in Multiple 
Classes of Ships

The Design Problem
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for various design variants that are offered in 
order to save development and production costs. 
Methods have been in development to optimize 
these decisions (e.g. Gonzalez-Zugasti et al., 2000; 
Simpson et al., 2001; Fujita and Yoshida, 2004; 
Fellini et al., 2005; Fellini et al., 2006). Simpson 
(2004) provides an extensive review of this work.  
The overall goal of the final research to be reviewed 
here (Corl, 2007; Corl et al., 2007a; Corl et al. 
2007b) was to apply these ideas to determining the 
optimum commonality to use in multiple classes of 
ships. This involved the extension of these methods 
to a multicriterion approach using evolutionary 
optimization methods. The methodology was 
tested using the missions of the U. S. Coast Guard 
Deepwater High and Medium Endurance fleets 
(U.S.C.G., 1995). The design criteria were the 
mission performance/cost for the high endurance 
cutter, the mission performance/cost for the 
medium endurance cutter, and the fleet-wide 

saving from the use of commonality. The strategic 
design question is how much commonality to use to 
maximize savings without excessive degradation of 
the performance/cost of the two design variants.

The test application was to utilize the missions of 
the U.S. Coast Guard’s Deepwater Cutter fleet 
that consists of the Maritime Security Cutter 
Large (WMSL), formerly the National Security 
Cutter (NSC), and the Maritime Security Cutter 
Medium (WMSM), formerly known as the 
Offshore Patrol Cutter (OPC).  The first NSC was 
launched in September 2007 and the OPC was 
being redesigned at the time of this work. Table 6 
shows the actual design characteristics of these two 
designs for reference (U.S.C.G. website 2006).

Three criteria were defined for this modeling:

The Design Modeling

Characteristics NSC OPC

Number of Cutters 8 25

Length Overall 127,4 m (418') Estimate 106,7 m (350')

Maximum Beam 16,46 m (54') Estimate 15,54 m (51')

Navigational Draft 6,4 m (21') Estimate 6,4 m (21')

Displacement 4368,3 t (4300 LT) Est. 3047,6 t (3000 LT)

Sprint Speed 28 kts 26,5 kts

Sprint Speed Range 2600 nm 1550 nm

Sprint Speed Endurance 3,91 days (94 hrs) 2,5 days (60 hrs)

Economical Speed 8 kts 9 kts

Economical Speed Range 12000 nm 9000 nm

Endurance 60 days 45 days

Propulsion Plant 2 Diesels, 1 Gas Turbine 4 Main Diesel Engines

Bow Thruster Yes Yes

Gun for Weapon System 57mm Gun 57mm Gun

Gunfire Control Mk-160/Mk 46/SPQ-9B Mk-160/Mk 46/SPQ-9B

Operating Days away from Port 230 230

Mission Days/Year 200-220 200-220

Bertching Capacity Limit 148 106

Number of Helicopter Hangars 2 2

Table 6. Nominal Characteristics of Actual NSC and OPC Fleets (Corl et al., 2007b)
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The first two criteria are written as a benefit/cost 
ratio so that any over-design caused by the use 
of commonality will be penalized as wasteful.  
Independent variable vectors x1 and x2 defined the 
NSC mission vessel design and the OPC mission 
vessel design, respectively. Vector xC defines the 
common components used in these designs.  

The vessel designs were developed using an 
adaptation of the U.S. Coast Guard’s Performance 
Based Cost Model (NSWC, Carderock Division, 
1998), which was developed by the U.S. Navy 
using components of its Advanced Surface Ship 
Evaluation Tool (ASSET, 2005) and the Canadian 
equivalent SHOP5 with Cost Estimating 
Relationships (CER’s) in constant 1998 U.S. 
dollars based upon the U.S. Coast Guard’s WHEC 
378, WMEC 270, WMEC 210, and Great Lakes 
Icebreaker. The model is capable of synthesizing 
frigate-sized, deepwater cutters of over 1500 t 
including acquisition, operational, and support 
costs. The engines and ship service generators come 
from catalogs of available designs. This model was 
modified to reduce the number of inputs to the 
eight as listed in Table 7 with all needed constraints 
included internal to the synthesis. For example, the 
GMT was estimated using the parametric models 
from Parsons (2003)

The independent variables in Table 7 compose 
x1 and x2 describing the NSC mission vessel and 
the OPC mission vessel, respectively. The ranges 
considered for these variables were roughly ±10% 
from the values for the actual NSC and the 
OPC designs. The power plants considered were 
(1) a four (two cruise, two sprint) diesel engine 
CODAD plant or (2) a two cruise diesel, one spint 
gas turbine (CODOG) plant, with both using twin 
screws, mechanical gearing, and controllable pitch 
propellers. The weapon suites were (W1) a 46mm 
gun, (W2) a 57mm gun, and (W3) both a 57mm 

Table 7. Independent Variables and Ranges 
(Corl et al., 2007b)

					         (15)

					         (14)

					         (13)f1(x1, xC) = NSC Mission Vessel Mission Effectiveness/
Average Ship Cost for 8

f2(x2, xC) = NSC Mission Vessel Mission Effectiveness/
Average Ship Cost for 25

f3(x1, x2, xC) = net fleet savings from use of 
commonality xC

Independent Variable Ranges

Power Plant Type 1 or 2

Midship Coefficient 0,75 - 0,99

Block Coefficient 0,45 - 0,85

Lenght 82,3-143,3 m 
(270'-470')

Maximum Speed 19-31 knots

Range @ Cruising Speed 8000-14000 nm

Number of Helicopter Hangars 1 or 2

Weapon System Type 1, 2 or 3

gun and a Phalanx Close in Weapon System 
(CIWS).

The vessel performance used a modeling similar 
to Brown and Salcedo (2003) who presented a 
multicriterion optimization methodology for 
mission performance versus cost. Following their 
model for mission effectiveness, the mission 
performance/cost for vessel i was as follows:

where the MPij are the mission profile percent time 
each vessel will spend in mission j.  The ability of 
each ship i to successfully accomplish each mission 
j is assumed to depend upon K performance 
characteristics, yk. The contribution of each 
performance characteristic yk of ship i to the 
success of its mission j is characterized by a fuzzy 
membership function or fuzzy utility 0 ≤ Uijk(yk) 
≤ 1. The overall mission effectiveness is obtained 
by minimum correlation inference (Kosko, 1992).  
The Costi is the average cost of ship i.

The missions of the types of vessels were taken 
from U.S. Coast Guard planning (U.S.C.G., 
1995). The NSC and OPC missions both include 
National Defense, drug interdiction, and living 
marine resources (LMR) missions. The NSC also 
performs general defense operations while the OPC 
performs alien migration interdiction operations.  

					         (16)
[Performance/Cost]i = Σ MPijmin[Uijk(yk)]/Costi

j k
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For each of the J = 4 missions, four ship attributes 
were selected to describe each ship’s ability to 
perform these missions.  The K = 4 attributes were 
maximum speed (knots), number of helicopter 
hangers (1 or 2), weapons systems, and endurance 
range (nm).  For each mission, four fuzzy utility 
functions were developed for methodology testing.  

Those for the drug interdiction missions are shown 
in Fig. 12.  This mission places a premium on fast 
aerial assets for surveillance with less emphasis on 
weapon systems as shown.  Endurance is relatively 
less important in the Caribbean where most of 
these operations occur.
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Fig. 12. Fuzzy Utilities for Drug Interdiction Mission (Corl et al., 2007b)

The net fleet savings function f3(x1, x2, xC) should 
consider all net fleet-wide savings realized from the 
use of commonality through savings in training, 
logistical support, bulk procurement, detailed 
design development, and construction, etc. In this 
study, only the savings from bulk purchase savings 
and construction learning curve savings were 
included.

The commonality decisions are a set of integers 
in xC that specify which ship components will 
be common between both ship classes. If a given 

component is designated as common, both ships 
are constrained to use that component. By varying 
the number and option choice of the common 
components, the design space can be populated. The 
various combinations of these common components 
are used to determine which set of common 
components result in Pareto optimal designs for 
Ship A (NSC mission) and Ship B (OPC mission). 
As the various combinations of commonality are 
applied to the designs, the optimization fills out 
the three criterion Pareto front or Pareto surface.  
Figure 13 shows a schematic of the expected 
discrete Pareto front that will be obtained for this 
multicriterion optimization.

The Optimization Methodology
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Every set of commonality components ℓ will result 
in a solution for Ship Aℓ and Ship Bℓ that will be 
located on a line of commonality.  If a single ship 
were being considered for both missions, this line 
would be the two-objective Pareto Front for Ship 
Aℓ performance/cost and Ship Bℓ performance/cost.  
For specific commonalities, Ships A1 and B1 might 
use the same cruise engines; Ships A2 and B2 might 
share the same cruise engines and weapon system. 
As more things become common, the savings can 
increase and the ship designs will tend toward each 
other on the Pareto surface as more effectiveness is 
sacrificed for commonality.  When every item on 
the ships is common, the result will be one design 
for both missions (point C in Fig 13).  Once every 
combination of common components is used in 
the optimization, the discrete Pareto front will 
be fully populated.  The Pareto Front will not be 
continuous because of the discrete nature of the 
commonality variable.  Rather, the Pareto front 
will be a collection of pairs of discrete points as 
shown in Fig. 13.

The optimization was performed with an 
adaptation of the evolutionary algorithm developed 
by Zalek (2007).  Penalty functions for constraint 

satisfaction were not needed since all constraints 
were implemented within the synthesis model.  The 
non-domination solution sorting was performed 
first for the primary criteria only and then for 
the sum of the primary criteria and a diversity 
measure D, if neither solution was dominant.  
This caused the method to emphasize developing 
non-dominated solutions early in the generations 
and then focus more on filling out the Pareto 
front through diversity pressure as the generations 
evolved.  For testing, this was applied to the two 
criterion optimization of one ship design to satisfy 
both the NSC mission and the OPC mission.  The 
typical progression of these solutions through 108 
generations is shown in Fig. 14.  The dense line 
through the center of the figure is the dividing line 
between designs with one helicopter hanger (below 
and to the right, the less capable OPC end) and 
two helicopter hangers (above and to the left, the 
more demanding NSC end).

The two criterion analysis for a single design to 
do both missions was studied to establish which 
choices of weapons, cruise engines, and ship 
service generators occurred in the Pareto optimal 
designs. This was used to guide which options 
to include in the commonality study. The results 
showed that only two cruise engines (C7 or C9 
from the synthesis model catalog of engines), three 
ship service generators (G0, G1, or G3), and two 
weapon systems (W1 or W3) were ever Pareto 
optimal as shown in Fig. 15. These cruise engine 
and ship service generator results were used to 
reduce the scope of the commonality study. It was 
also noticed that when the number of helicopter 
hangers was set, there was very little variation in the 
resulting superstructure volume. It was with either 
a small superstructure (one helicopter hanger) or a 
large superstructure (two helicopter hangers).  Also, 
the number of helicopter hangers resulted in little 
variation in the beam and depth of the hull, with 
either a small beam and depth or a larger beam 
and depth. Thus, a common superstructure (small 
or large) and common midship section hull blocks 
(small or large) were included as commonality 
options.  

Sample Results

B1

B2

B3

B4

B5

B6
A6

A5

A4

A3
A2 A1

B

Fleet Savings

Ship A
Performance/Cost

Ship B
Performance/Cost

Lines of
Commnality

1

1

1

A

C

Fig. 13. Expected Discrete Pair Pareto Surface 
(Corl, 2007)
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Fig. 14. Progression of Evolutionary Solution toward the Pareto Front (Corl et al., 2007b)

Fig. 15. Natural Commonality within Pareto Front Solutions (Corl et al., 2007b)
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The modeling for the commonality was then an 
integer vector of the form xC = [0 2 0 1 3]T where 
the positions indicate the commonality decision for 
weapons, ship service generators, cruise engines, 
superstructure, and midship section hull blocks, 
respectively; the zero indicates no commonality is 
imposed; and a non-zero entry indicates the index 
number of the commonality choice imposed on 
the designs.

The multicriterion evolutionary algorithm was 
adapted further to obtain two separate, higher-
quality solutions near the end of the f1 and f2 Pareto 
front, since the end points were all that was needed 
as shown in Fig. 13. The analysis was then run 
for all 288 possible combinations of commonality 
decisions. These results produced three bands of 
similar designs: 128 NSC mission vessels with two 
helicopter hangers, 160 NSC mission vessels with 
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Fig. 16. Three-Criterion Discrete Pareto Surface (Corl et al., 2007b)

one helicopter hanger, and 288 OPC mission vessels 
with one helicopter hanger. Of these results, 129 of 
the pairs resulted in negative net fleet savings when 
more expensive components were being imposed 
on the less demanding OPC mission vessels. This 
is a common fallacy of most of previous work 
on platforms where it is usually assumed that all 
commonality is good. Because the optimization 
criterion used here involves performance/cost and 
no increase in the performance utilities occurs 
with more than the goal level, over-design results 
in a loss in performance/cost.  

When the 159 remaining positive net fleet savings 
commonality pairs were sorted to determine 
those non-dominated designs that lie on the 
Pareto surface, only 20 different commonality 
combinations remained. Of these there were only 
12 uniquely different design pairs from a naval 

architectural standpoint. These are as shown in 
Fig. 16 with the baseline, no commonality designs 
that yield no net fleet savings (best NSC, and best 
OPC). The design pair NSC15 and OPC15 (using the 
46 mm gun, the smaller cruise engines, the smallest 
ship service generators, the small superstructure 
and the small midship section blocks in common) 
yield the greatest overall fleet savings from their 
commonality. Note, however, that the NSC15 
design has a significant performance loss compared 
to the baseline design, primarily from to its use of 
only one helicopter hanger. The NSC18 and OPC18 
designs (using the smallest ship service generators 
and the large superstructure in common) have 
the largest net fleet savings before the shift from 
two helicopter hangers to one. Thus, they are at a 
“knee” of the surface and are particularly attractive 
designs.
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The characteristics of the NSC18/OPC18 pair 
and the NSC15/OPC15 pair of designs are shown 
in Table 8.  Note that the NSC15 design has a 

significant (52.4%) performance loss compared to 
the baseline design, primarily due to its use of only 
one helicopter hanger.  Note also that the two 15 
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Three recent advanced ship design research efforts 
at the University of Michigan were reviewed 
to illustrate some of the capability of modern 
evolutionary and fuzzy optimization to address 
complex, multicriterion naval ship design problems 
encountered in early design. The work of Zalek used 
a multicriterion evolutionary algorithm to optimize 
the hull form of a naval combatant for smooth 
water powering and seakeeping performance. The 
work of Nick and Daniels used single criterion 
fuzzy optimization with either a hybrid agent/
GA method or a GA to optimally allocate spaces 
to Zone-decks and then arrange these spaces in 
a naval surface vessel. The work of Corl used a 
multicriterion evolutionary algorithm to optimize 
the commonality to use in vessels for two different 
missions in order to maximize the net fleet savings 
from the commonality. Extensive references are 
provided to aid those interested in investigating 
this work further.

The optimal hull form and optimal general 
arrangement projects described here were sponsored 

by the U. S. Navy, Office of Naval Research through 
Luise Couchman and Kelly Cooper as part of the 
Naval Engineering Modeling and Optimization 
(NEMO) program.   The optimal arrangements 
project was also sponsored by the U.S. Navy, 
Naval Surface Warfare Center Carderock Division 
through Robert Ames.  The optimal commonality 
research was sponsored by the U. S. Coast Guard 
and the U.S. Navy, Office of Naval Research 
through Kelly Cooper.  These efforts could not 
have been undertaken without this support.  
Special acknowledgement and thanks go to my 
four graduate students Stephen Zalek, Eleanor 
Nick, Anthony Daniels, and LCDR Michael Corl, 
U.S.C.G. whose graduate research is described here.   
Richard B. Couch Professor of Naval Architecture 
and Marine Engineering Robert F. Beck co-chaired 
Zalek’s dissertation with the author.

PARSONS, M. G., AND SCOTT, R. L. (2004). 
“Formulation of Multicriterion Design 
Optimization Problems for Solution with 
Scalar Numerical Optimization Methods.” 
Journal of Ship Research, 48:1, March.

designs are probably close enough that it might be 
better to produce one design for both missions and 
save even more by complete commonality.  Note 
that the NSC18/OPC18 pair provide 97% of the 

NSC baseline performance, 100% of the OPC 
baseline performance, and still provide 60.7% of 
the maximum net fleet savings observed.

Point L
m(ft)

B
m(ft)

Vmax
kts

KWmax
(SHP)

Vcruise
kts

KWcruise
(SHP)

Range
nm W H C G OPC

Perf
NSC
Perf

Cost
$mil

Fleet 
Savings

$mil

OPC18

107,6
(353)

16,46
(54) 22,0 5757

(7720) 18,0 2895
(3882) 9158 1 2 8 0 100,0 0,314 89,8 45,5

NSC18

121,6
(399)

16,46
(54) 27,9 16687

(22377) 18,0 3585
(4807) 12074 3 2 9 3 100,0 97,0 141,7 45,5

OPC15

91,4
(300)

12,19
(40) 22,2 5333

(7152) 18,0 2537
(3402) 9046 1 1 7 0 89,7 2,946 72,9 75,0

NSC15

92,4
(303)

12,19
(40) 25,5 9642

(12930) 18,0 2767
(3710) 9019 1 1 7 0 89,9 47,6 91,1 75,0

Table 8. Characteristics for Selected Designs on Pareto Front (Corl et al., 2007b)

Conclusions
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