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This paper describes the development of a regular hull meshing code using cubic B-Spline curves. The 
discretization procedure begins by the definition of B-Spline curves over stations, bow and stern contours 
of the hull plan lines. Thus, new knots are created applying an equal spaced subdivision procedure on 
defined B-spline curves. Then, over these equal transversal space knots, longitudinal B-spline curves are 
defined and subdivided into equally spaced knots, too. Subsequently, new transversal knots are created 
using the longitudinal equally spaced knots. Finally, the hull mesh is composed by quadrilateral panels 
formed by these new transversal and longitudinal knots. This procedure is applied in the submerged 
Wigley hulls Series 60 Cb=0.60. Their mesh volumes are calculated using the divergence theorem, for 
mesh quality evaluation.

El presente artículo describe un código computacional, desarrollado para la elaboración de mallas 
regulares de cascos utilizando cuvas B-Splines cúbicas. El procedimiento de mallado comienza con la 
definición de curvas B-Spline, en el sentido transversal del casco, sobre las estaciones y los contornos de la 
proa y popa de un plano de líneas de forma. Por medio de estas curvas B-Spline es posible la creación de 
nuevos puntos igualmente espaciados en las regiones donde fueron definidas. Posteriormente, con estos 
puntos son trazadas curvas B-Spline cúbicas en el sentido longitudinal del casco, las cuales son utilizadas 
para obtener puntos igualmente espaciados, que permiten la creación de nuevas estaciones. Finalmente, 
los puntos transversales y longitudinales son utilizados para formar los paneles cuadrilaterales de la malla 
del casco. Este procedimiento es aplicado en los cascos sumergidos del modelo de casco Wigley y Serie 60 
Cb=0.60. Los volumenes de estas mallas son calculados usando el teorema de la divergencia para servir 
como parametro de control de la calidad de la malla.
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Traditionally, hull lines are designed manually 
using flexible wood beams known as splines, 
which can be fixed with lead weights or ducks 
for drafting a specific curve. The defined spline 
curve can be controlled locally or globally by 
moving ducks, which is useful for fairing. This 
process is necessary to obtain the hull and begin 
calculations such as hydrostatics, hydrodynamics, 
stability, structures and ship construction and 
production. This drafting process has been 
historically represented by mathematical models. 
One of the first efforts in this area was the work of 
Frederik Chapman, who in 1776 used parabolas to 
represent waterlines and other hull surface curves 
(Ventura, 1996). In 1915, David Taylor also used 
mathematical equations for parabolas, hyperbolas 
and fifth order polynomials to represent the hull 
shapes of his systematic series. Between 1915 to 
1970 several researchers used polynomials and 
other analytical geometric functions to represent 
hulls. Nevertheless, parabolas and conventional 
polynomial equations are difficult when fairing 
and locally modifying curves.

Mathematical models more similar to the wood 
spline drafting procedure began to appear. In 1957, 
Paul de Casteljau developed a spline described by 
parametric curves defined by control points, to be 
introduced in the Citroën automotive industry. 
In a parallel research, Paul Bezier developed an 
equivalent mathematical representation known 
as Bezier curve, while he had been working for 
Renault during 1962. A limitation of these curves 
was the impossibility to be modified locally for 
nearby control points, and its dependence on 
the number of control points with curve degree 
(Rogers, 1977). 

One of the most important contributions to a closer 
mathematical spline representation, without the 
issues of the Bezier curves, occurred in 1940, when 
Schoenberg developed a spline function based on 
a parametric mathematical representation of third 
degree polynomial to fit statistical data named as 
B-Spline or Basis Spline (Cabral, et al., 1990). The 
properties, characteristics and piecewise adaptation 
of this function were studied and developed in 

1972 by Carl de Boor (De Boor, 2001). Further, 
B-Splines were introduced into Computer Aided 
Design (CAD) software by J. Ferguson for Boeing 
Co in 1963.

With increasing computer processing capacity in 
the 60’s, the application of CAD in ship design 
also grew. Nowadays it is possible to perform 
hydrostatic, stability, structural and hydrodynamic 
analysis with it. Using a group of knots known as 
a mesh to represent the hull surface. This mesh can 
be composed of quadrilateral (regular) or triangular 
(irregular) knot arrangements. 

This paper describes the mathematical formulation 
and methodology using in Salhua (2010) for a 
quadrilateral hull mesh generation code, using 
cubic B-Splines curves to represent submerged 
hulls. Finally, the Wigley model Series 60 Cb=0.60 
hull are used for mesh generation evaluations.

B-spline definition

A B-Spline function is a mathematical representation 
of a piecewise polynomial curve through parametric 
equations. Each segment is joined following 
geometric (C0), slope (C1) and curvature (C2) 
continuity conditions. Moreover, a cubic B-Spline 
function has a polynomial order of 4 and has to 
follow two conditions (Riesenfeld, 1973):

a) The cubic B-Spline needs to be a third  
degree polynomial on each segment.

b) The first and second derivatives are 
continuous on each segment.

A piecewise cubic B-spline curve can be composed 
by m segments where each one is defined by four 
control points. A complete B-Spline curve needs 
to have m+1 knots and m+3 control points. Each 
neighboring segment shares three control points, 
so each segment has a different one, (Yamaguchi, 
1978). As a example shown in Fig. 1, the curve has 
4 knots, 3 segments and 6 control points.
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The number of control points exceeds the number 
of knots, Yamaguchi (1978) suggests the use of 
two additional boundary conditions equations to 
complete the system, see equations (6) and (7).

These conditions are applied as shown in Fig. 2.

Considering the parametric variable t of the 
blending B-Spline functions equal to zero to 
identify the initial knot and one for the final knot 
of each curve segment, (Cabral, et al., 1990). The 
base functions are:

The B-spline mathematical formulation of cubic 
B-spline knots depends on blending the functions 
and control points, see equation (1), (Cabral, et al., 
1990) and (De Boor, 2001).

Where:

i: knot identification number.
Pi(t) : B-spline (x,y,z) knots vector.
Vi-1, Vi , Vi+1 , Vi+2: Control points (X, Y, Z) vectors.
E0(t) , E1(t), E2(t) , E3(t) : B-spline blending functions.

The blending functions are created to transform 
a polynomial equation into a piecewise and 
parametric curve B-Spline equation. These are 
imposed on each segment along curve and satisfy 
C0, C1, C2 continuity conditions. Primarily, they 
allow for local control of the curve shapes. That 
is an improvement against simple polynomials, in 
which any change in any part modifies the entire 
curve. They are defined in 1D parameter t and vary 
from 0 to 1. Therefore t=0 corresponds to the initial 
knot segment and t=1 corresponds to the last one. 
The cubic B-Spline blending functions are shown 
in equations (2) to (5) (Yamaguchi, 1978):

Fig. 1. Cubic B-Spline with 3 segments.

Fig. 2. Open B-Spline curve.
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The last base function E3 (0) is equal to zero when 
t = 0, so the mathematical cubic B-Spline equation 
can be represented with only three base functions 
and control points, see equation (12).

Equation (12) is applied through the four knots of 
Fig. 1 to obtain B-Spline control points by solving 
the linear system shown in (13) with the application 
of boundary conditions shown in equations (6) 
and (7).

Where:

[P ]: vector of curve knots.

[V ]: vector of control points.

[E(0)]: blending functions matrix when t=0.

Length calculation

A total length of the B-Spline curve is calculated by 
each segment curve and then added for a total, see 
equation (14).

Where:

Si (t): Length of segment i.
t: parameter of blending functions, in this case t = 1.

m: Total number of segments of a B-Spline curve.
xi , yi , zi : Coordinates of the B-spline curve.

The derivatives of the blending functions are shown 
as follows:

A hull lines plan is used to extract knots from three 
regions: Stern contour, Transversal stations and Bow 
contour, see Fig. 3.

(11) (14)
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Methodology
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B-Splines curves are defined individually over each 
station, stern and bow contours. Further, their 
total lengths are calculated (Stotal ), as described in 
section 2.2.

Over each B-Spline curve, the total length is 
equally subdivided by a desired subdivision Ntran, 
as follows:

To obtain the segments and t parameters in each 
curve that correspond to the equally spaced length 
subdivision, see Fig. 5. A root-finding algorithm 
numerical method is applied for the following 
function:

Where:

i: is the segment number of a curve.

To solve the equation (20), the secant method is 
used (Nakamura, 1991), see equation (21).

Where:

j: index subdivision of t.

Through this subdivision procedure, new knots 
are created to obtain equal subdivided B-Spline 
curves. In these equally spaced knots, longitudinal 
B-splines curves are defined and subdivided into 
equally spaced knots (NLong). Furthermore, over 
these new longitudinal knots, new transversal 
stations and stern and bow contours are created. 
This procedure is executed transversally and 
longitudinally to obtain a new hull discretization.

Through this subdivision procedure, new knots 
are created to obtain equal subdivided B-Spline 
curves. In these equally spaced knots, longitudinal 
B-splines curves are defined and subdivided into 
equally spaced knots (NLong). Furthermore, over 
these new longitudinal knots, new transversal 
stations and stern and bow contours are created. 
This procedure is executed transversally and 
longitudinally to obtain a new hull discretization.

The generated mesh is used to define single planar 
quadrilateral panels, see Fig. 6 , over the entire 
hull surface.

(19)

(20)

(21)
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contourTransversal
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Fig. 3. Hull lines of ship. Fig. 5. Station equally subdivision.

Fig. 4. Station divided in equal length subdivision.
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The hull volume is calculated through the 
transformation of volumetric into superficial 
integration. Through the divergence theorem, see 
equation (22), applied over all hull surface.

Where:

Position vector r = xi + yj + zk
x , y , z :coordinates of each quadrilateral panels.

Considering the hull surface is composed by 
several planar panels, a formulation for volume 
calculation is shown in equation (23), (Alvarez & 
Martins, 2007).

Where:

V: volume (m3).
Xo(Q), Yo(Q), Zo(Q): centroid coordinates of panel Q.
nx(Q), ny(Q), nz(Q): normal vector components in 
the centroid of panel Q.
NT: total number of hull surface panels.

In order to evaluate the effectiveness of the 
computer code implemented with the methodology 

described previously, the Wigley hull (Journee, 
2001) Series 60 Cb = 0.6 hull (Todd, 1953) are 
used for mesh generation tests and their submerged 
volume is used for mesh quality evaluation.

Wigley Hull

This hull has round shapes and can be represented 
using a parabolic equation, see equation (24), 
shown in Journee (2001).

Where:

B: beam.
L: length.
T: draught.
x: longitudinal coordinate of a hull station.
z: vertical coordinate of a hull station.
y: transversal coordinate of a hull station.

The main dimensions of the hull used are:

The submerged hull lines have fore and aft 
symmetry as follows:

(22)

(23)

Results

(24)

Parameter Value Unit

Lwl z1.0 m

B 0.10 m

T 0.0625 m

Cb 0.444

0.00278 m3

Table 1. Dimensions of Wigley hull.

Fig. 7. Submerged Wigley hull lines.
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Extracting discrete points of these hull stations as 
original knots, several meshes are generated only over 
one band of the hull, due to transversal symmetry. 
Two of these hull meshes are shown in Fig. 8.

Fig. 9 shows a comparison between the original 
and B-spline knot stations in longitudinal positions 
x=0.842m and x=0.526m. The cubic B-spline 
curves represent properly the behavior of these 
stations, despite the use few original knots. This is 
due to the C2 continuity between the original and 
the B-Spline station.

A comparison of several calculated mesh volumes 
with theoretical value (Table 1), is shown in Table 2.
From Table 2, it is possible to observe a good 
convergence with increasing mesh refinement.

Series 60 – Cb = 0.6

This hull represents a merchant-type ship, its 
development is described in Todd (1953). It has 

a flat bottom which is almost ship length and a 
straight side at the midship region, see submerged 
body in Fig. 10.

The main dimensions of the submerged body are 
described in Table 3.

Through the methodology described before, it is 
possible to create and refine hull meshes, see Fig. 11.

Considering the offset table, described in Todd 
(1953), as original knots to represent a B-Spline 
curve, a poor representation of midship section 
was observed, see Fig. 12. This is due to the 
discontinuity of the curvature (C2) between 

Mesh Panels
Calculated  

Vol. (m3)

Volume 

error

1 300 2.766E-3 0.504%

2 800 2.772E-3 0.288%

3 1500 2.774E-3 0.216%

4 2400 2.774E-3 0.216%

5 3500 2.774E-3 0.216%

Table 2. Volume Comparison of Wigley hull meshes.

Mesh 1
Total panels: 300

Mesh 2
Total panels: 800

x
y

z

x
y

z

Fig. 8. Wigley Hull with two types of discretization.

Fig. 9. Station comparisons between original and 
B-spline representations.
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Parameter Value Unit

Lwl 1 m

B 0.1428 m

T 0.05715 m

Cb 0.6

0.004096 m3

Table 3. Dimensions of Wigley hull.

Fig. 11. Series 60 Cb=0.6 Hull with two types of discretization.

Mesh 1
Total panels: 300

Mesh 2
Total panels: 800
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z
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straight parts (bottom and side) and the rounded 
bilge. For that reason, the cubic B-Spline curves 
used in this work do not represent properly the 
stations composed by straight and rounded parts.

To overcome the issue of C2 continuity, fl at bottom 
and bilge are defi ned by more original knots. Th is 
action increases the number of control points over 
these parts, adjusting the curvature transition of 

Fig. 12. Midship station comparisons between original 
knots and spline representation.
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Fig. 13. Midship stations comparisons between original 
knots and refi nement and spline representation.
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In the case of the Series 60 – Cb = 0.60 hull, the 
flat bottom and side of the parallel body creates 
problems in the cubic B-Spline representation due 
to C2 discontinuity. To overcome this issue, more 
original knots need to be allocated in the straight 
regions to force the cubic B-Spline curves to adjust 
to these stations. This adjustment allows to work 
around this limitation. Nevertheless, the value of the 
volume converges with increasing refinement. That 
was expected because a higher refinement allows to 
represent the submerged body more accurately.

To solve discontinuity problems, the use of a 
B-Spline formulation with non-uniform blending 
functions and special treatment of control points 
in the connection between regions as flat bottom 
or straight side with round bilge, as described in 
Cabral et al. (1991). 
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